dc.contributor | Ruiz Maldonado, Milton Gonzalo | |
dc.creator | Liquinchana Saguano, Diego Stalin | |
dc.date.accessioned | 2022-09-14T17:43:49Z | |
dc.date.accessioned | 2022-10-20T18:08:28Z | |
dc.date.available | 2022-09-14T17:43:49Z | |
dc.date.available | 2022-10-20T18:08:28Z | |
dc.date.created | 2022-09-14T17:43:49Z | |
dc.date.issued | 2022-09 | |
dc.identifier | http://dspace.ups.edu.ec/handle/123456789/23323 | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/4570089 | |
dc.description.abstract | This study presents a fault classification system based on artificial neural networks (ANN). In this sense, the types of faults considered for classification are phase-to-earth, phase-to-phase, three-phase and double line-to-earth faults. From another perspective, for ANN training, a data set is constructed, containing RMS values of voltages, fault currents and zero sequence currents, under different impedance and fault location parameters. These data are obtained from short-circuit studies and are used to extract the characteristics of the voltages and currents of each phase under normal and fault conditions. Therefore, the Levenberg-Marquardt algorithm is applied during the training phase of the ANN.
For the validation of results, the fault classifier is tested using the IEEE 9 and 14 busbar test systems. From the tests performed, an average fault classification accuracy of 97% was obtained for each system. | |
dc.language | spa | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/3.0/ec/ | |
dc.rights | openAccess | |
dc.rights | Atribución-NoComercial-SinDerivadas 3.0 Ecuador | |
dc.subject | ELECTRICIDAD | |
dc.subject | FALLAS DE SISTEMAS (INGENIERÍA) | |
dc.subject | SISTEMAS DE ENERGÍA ELÉCTRICA | |
dc.subject | REDES ELÉCTRICAS | |
dc.subject | REDES NEURONALES | |
dc.subject | ALGORITMOS | |
dc.title | Clasificación de fallas eléctricas aplicando redes neuronales artificiales a la protección de distancia de líneas de transmisión basada en el algoritmo de levenbergmarquardt | |
dc.type | bachelorThesis | |