dc.contributorRuiz Maldonado, Milton Gonzalo
dc.creatorLiquinchana Saguano, Diego Stalin
dc.date.accessioned2022-09-14T17:43:49Z
dc.date.accessioned2022-10-20T18:08:28Z
dc.date.available2022-09-14T17:43:49Z
dc.date.available2022-10-20T18:08:28Z
dc.date.created2022-09-14T17:43:49Z
dc.date.issued2022-09
dc.identifierhttp://dspace.ups.edu.ec/handle/123456789/23323
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4570089
dc.description.abstractThis study presents a fault classification system based on artificial neural networks (ANN). In this sense, the types of faults considered for classification are phase-to-earth, phase-to-phase, three-phase and double line-to-earth faults. From another perspective, for ANN training, a data set is constructed, containing RMS values of voltages, fault currents and zero sequence currents, under different impedance and fault location parameters. These data are obtained from short-circuit studies and are used to extract the characteristics of the voltages and currents of each phase under normal and fault conditions. Therefore, the Levenberg-Marquardt algorithm is applied during the training phase of the ANN. For the validation of results, the fault classifier is tested using the IEEE 9 and 14 busbar test systems. From the tests performed, an average fault classification accuracy of 97% was obtained for each system.
dc.languagespa
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/ec/
dc.rightsopenAccess
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Ecuador
dc.subjectELECTRICIDAD
dc.subjectFALLAS DE SISTEMAS (INGENIERÍA)
dc.subjectSISTEMAS DE ENERGÍA ELÉCTRICA
dc.subjectREDES ELÉCTRICAS
dc.subjectREDES NEURONALES
dc.subjectALGORITMOS
dc.titleClasificación de fallas eléctricas aplicando redes neuronales artificiales a la protección de distancia de líneas de transmisión basada en el algoritmo de levenbergmarquardt
dc.typebachelorThesis


Este ítem pertenece a la siguiente institución