dc.contributorGómez Ríos, Mónica
dc.creatorCevallos Correa, Fabiola Lissett
dc.date.accessioned2021-09-15T20:03:15Z
dc.date.accessioned2022-10-20T18:04:30Z
dc.date.available2021-09-15T20:03:15Z
dc.date.available2022-10-20T18:04:30Z
dc.date.created2021-09-15T20:03:15Z
dc.date.issued2021
dc.identifierhttp://dspace.ups.edu.ec/handle/123456789/20903
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4568348
dc.description.abstractThis article conducts the study of the algorithms and methods used for automatic speech recognition. The importance of its application lies in improving the learning process taking into account characteristics such as pronunciation, communication, and linguistic skills in improving the accuracy and good use of speech. A search was carried out for the different studies related to the objective of analyzing the most used algorithm and the method that complements it to find the most relevant and inconvenient characteristics in its use. Thus, one of the most commonly used algorithms was found to be DNN (deep neural networks) and HMM (hidden Markov model). From this review, we observed that the use of speech recognition for learning has been experienced from an early age in children, adolescents, and adults with relevant results, being one of the main drawbacks to its operation, noise
dc.languagespa
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/ec/
dc.rightsopenAccess
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Ecuador
dc.subjectSPEECH RECOGNITION
dc.subjectALGORITHMS
dc.subjectDNN (DEEP NEURAL NETWORKS)
dc.subjectHMM (HIDDEN MARKOV MODEL)
dc.subjectVITERBI ALGORITHM
dc.subjectBAUM-WELCH ALGORITHM
dc.subjectLEARNING
dc.titleReconocimiento automático de voz aplicado a la mejora en el proceso de aprendizaje de lectura en nivel escolar
dc.typebachelorThesis


Este ítem pertenece a la siguiente institución