dc.creatorMurillo Morera, Juan
dc.creatorQuesada López, Christian Ulises
dc.creatorCastro Herrera, Carlos
dc.creatorJenkins Coronas, Marcelo
dc.date.accessioned2018-01-17T21:51:02Z
dc.date.accessioned2022-10-20T01:56:30Z
dc.date.available2018-01-17T21:51:02Z
dc.date.available2022-10-20T01:56:30Z
dc.date.created2018-01-17T21:51:02Z
dc.date.issued2016-11-09
dc.identifierhttp://ieeexplore.ieee.org/document/7942359/
dc.identifier978-1-4673-9578-6
dc.identifier978-1-4673-9579-3
dc.identifierhttps://hdl.handle.net/10669/73872
dc.identifier10.1109/CONCAPAN.2016.7942359
dc.identifier834-B5-A18
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4543803
dc.description.abstractIn software engineering, software quality is an important research area. Automated generation of learning schemes plays an important role and represents an efficient way to detect defects in software projects, thus avoiding high costs and long delivery times. This study carries out an empirical evaluation to validate two versions with different levels of noise of NASAMDP data sets. The main objective of this paper is to determine the stability of our framework. In all, 864 learning schemes were studied (8 data preprocessors x 6 attribute selectors x 18 learning algorithms). In line with statistical tests, our framework reported stable results between the analyzed versions. Results reported that evaluation and prediction phases were similar. Furthermore, the performance of the phases of evaluation and prediction between versions of data sets were stable. This means that the differences between versions did not affect the performance of our framework
dc.languageen_US
dc.sourceCentral American and Panama Convention (CONCAPAN XXXVI), 2016 IEEE 36th. San José, Costa Rica:IEEE
dc.subjectPrediction models
dc.subjectLearning schemes
dc.subjectSoftware metrics
dc.subjectSoftware metrics
dc.subjectStatistical analysis
dc.subjectEmpirical procedure
dc.titleAn empirical evaluation of NASA-MDP data sets using a genetic defect-proneness prediction framework
dc.typeartículo científico


Este ítem pertenece a la siguiente institución