The Hankel transform of causal distributions
The Hankel transform of causal distributions
dc.creator | Aguirre T., Manuel A. | |
dc.date.accessioned | 2015-05-19T18:03:10Z | |
dc.date.accessioned | 2022-10-20T01:39:24Z | |
dc.date.available | 2015-05-19T18:03:10Z | |
dc.date.available | 2022-10-20T01:39:24Z | |
dc.date.created | 2015-05-19T18:03:10Z | |
dc.date.issued | 2012-03-29 00:00:00 | |
dc.identifier | http://revistas.ucr.ac.cr/index.php/matematica/article/view/144 | |
dc.identifier | ||
dc.identifier | https://hdl.handle.net/10669/12777 | |
dc.identifier | 10.15517/rmta.v4i2.144 | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/4541775 | |
dc.description.abstract | In this note we evaluate the unidimensional distributional Hankel transform of \dfrac{x^{\alpha-1}_{+}}{\Gamma^{\alpha}},\dfrac{x^{\alpha-1}_{-}}{\Gamma^{\alpha}},dfrac{|x|^{\alpha-1}}{\Gamma^{\frac{\alpha}{2}}},dfrac{|x|^{\alpha-1}sgn(x)}{\Gamma^{\frac{\alpha +1}{2}}} and (x± i0)^{\alpha-1} and then we extend the formulae to certain kinds of n-dimensional distributions calles "causal" and "anti-causal" distributions. We evaluate the distributional Handel transform of \dfrac{(m^2+P)^{\alpha -1}_{-}}{\Gamma^{(\alpha)} }, \dfrac{|m^2+P|^{\alpha -1}_{-}}{\Gamma^{(\frac{\alpha}{2})}}, \dfrac{|m^2+P|^{\alpha -1}sgn(m^2+P)}{\Gamma (\frac{\alpha +1}{2 })} and (m^2+P±i0)^{\alpha-1} | |
dc.description.abstract | In this note we evaluate the unidimensional distributional Hankel transform of \dfrac{x^{\alpha-1}_{+}}{\Gamma^{\alpha}},\dfrac{x^{\alpha-1}_{-}}{\Gamma^{\alpha}},dfrac{|x|^{\alpha-1}}{\Gamma^{\frac{\alpha}{2}}},dfrac{|x|^{\alpha-1}sgn(x)}{\Gamma^{\frac{\alpha +1}{2}}} and (x± i0)^{\alpha-1} and then we extend the formulae to certain kinds of n-dimensional distributions calles "causal" and "anti-causal" distributions. We evaluate the distributional Handel transform of \dfrac{(m^2+P)^{\alpha -1}_{-}}{\Gamma^{(\alpha)} }, \dfrac{|m^2+P|^{\alpha -1}_{-}}{\Gamma^{(\frac{\alpha}{2})}}, \dfrac{|m^2+P|^{\alpha -1}sgn(m^2+P)}{\Gamma (\frac{\alpha +1}{2 })} and (m^2+P±i0)^{\alpha-1} | |
dc.language | es | |
dc.relation | Revista de Matemática: Teoría y Aplicaciones Vol. 4 Núm. 2 2012 | |
dc.title | The Hankel transform of causal distributions | |
dc.title | The Hankel transform of causal distributions | |
dc.type | artículo científico |