dc.creatorGracia Bondía, José M.
dc.creatorVárilly Boyle, Joseph C.
dc.creatorFigueroa González, Héctor
dc.date.accessioned2022-05-16T20:25:54Z
dc.date.available2022-05-16T20:25:54Z
dc.date.created2022-05-16T20:25:54Z
dc.date.issued1989-09
dc.identifierhttps://hdl.handle.net/10669/86592
dc.description.abstractThe strong dual space of the topological algebra L_b(S), where S is the Schwartz space of smooth declining functions on R, may be obtained as an inductive limit of projective limits of Hilbert spaces. To that end, we construct a symbol calculus for elements of L_b(S,S'). We show that the dual space is a dense ideal in L_b(S) itself, and can be given the structure of a Q-algebra with continuous quasiinversion.
dc.languageeng
dc.sourceSan José, Costa Rica: Universidad de Costa Rica
dc.subjectQuantum mechanics in phase space
dc.subjectTopological algebras
dc.subjectSchwartz
dc.titleAlgebras of distributions suitable for phase-space quantum mechanics. III. The dual space of the algebra L_b(S)
dc.typepreprint


Este ítem pertenece a la siguiente institución