dc.creatorKesler, Robert
dc.creatorMena Arias, Darío Alberto
dc.date.accessioned2018-11-02T20:19:59Z
dc.date.accessioned2022-10-20T00:45:30Z
dc.date.available2018-11-02T20:19:59Z
dc.date.available2022-10-20T00:45:30Z
dc.date.created2018-11-02T20:19:59Z
dc.date.issued2017-09
dc.identifierhttps://link.springer.com/article/10.1007/s13324-017-0195-3
dc.identifier1664-235X
dc.identifierhttps://hdl.handle.net/10669/76050
dc.identifier10.1007/s13324-017-0195-3
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4535602
dc.description.abstractConsider the discrete quadratic phase Hilbert Transform acting on $\ell^{2}(\mathbb{Z})$ finitely supported functions $$ H^{\alpha} f(n) : = \sum_{m \neq 0} \frac{e^{i\alpha m^2} f(n - m)}{m}. $$ We prove that, uniformly in $\alpha \in \bT$, there is a sparse bound for the bilinear form $\inn{H^{\alpha} f}{g}$. The sparse bound implies several mapping properties such as weighted inequalities in an intersection of Muckenhoupt and reverse H\"older classes.
dc.languageen_US
dc.sourceAnalysis and Mathematical Physics, vol8(29), pp. 1-12
dc.subjectDiscrete analysis
dc.subjectQuadratic phase
dc.subjectSparse bounds
dc.subjectHilbert transform
dc.subject515.733 Espacios de Hilbert
dc.titleUniform sparse bounds for discrete quadratic phase Hilbert transforms
dc.typeartículo científico


Este ítem pertenece a la siguiente institución