dc.creator | Kesler, Robert | |
dc.creator | Mena Arias, Darío Alberto | |
dc.date.accessioned | 2018-11-02T20:19:59Z | |
dc.date.accessioned | 2022-10-20T00:45:30Z | |
dc.date.available | 2018-11-02T20:19:59Z | |
dc.date.available | 2022-10-20T00:45:30Z | |
dc.date.created | 2018-11-02T20:19:59Z | |
dc.date.issued | 2017-09 | |
dc.identifier | https://link.springer.com/article/10.1007/s13324-017-0195-3 | |
dc.identifier | 1664-235X | |
dc.identifier | https://hdl.handle.net/10669/76050 | |
dc.identifier | 10.1007/s13324-017-0195-3 | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/4535602 | |
dc.description.abstract | Consider the discrete quadratic phase Hilbert Transform acting on $\ell^{2}(\mathbb{Z})$ finitely supported
functions
$$
H^{\alpha} f(n) : = \sum_{m \neq 0} \frac{e^{i\alpha m^2} f(n - m)}{m}.
$$
We prove that, uniformly in $\alpha \in \bT$, there is a sparse bound for the bilinear form $\inn{H^{\alpha} f}{g}$.
The sparse bound implies several mapping properties such as weighted inequalities in an intersection of Muckenhoupt and reverse H\"older classes. | |
dc.language | en_US | |
dc.source | Analysis and Mathematical Physics, vol8(29), pp. 1-12 | |
dc.subject | Discrete analysis | |
dc.subject | Quadratic phase | |
dc.subject | Sparse bounds | |
dc.subject | Hilbert transform | |
dc.subject | 515.733 Espacios de Hilbert | |
dc.title | Uniform sparse bounds for discrete quadratic phase Hilbert transforms | |
dc.type | artículo científico | |