dc.creatorGuier Acosta, Jorge Ignacio
dc.date.accessioned2021-10-31T18:27:18Z
dc.date.accessioned2022-10-20T00:21:34Z
dc.date.available2021-10-31T18:27:18Z
dc.date.available2022-10-20T00:21:34Z
dc.date.created2021-10-31T18:27:18Z
dc.date.issued2021-01
dc.identifierhttp://www.logique.jussieu.fr/semsao/index.html
dc.identifierhttps://hdl.handle.net/10669/84950
dc.identifier821-B9-128
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4532691
dc.description.abstractLet T∗ be the theory of lattice-ordered rings convex in von Neumann regular real closed f-rings, without minimal idempotents (non zero) that are divisible-projectable and sc-regular. I introduce a binary relation describing local divisibility. If this relation is added to the language of lattice ordered rings with the radical relation associated to the minimal prime spectrum (cf. [12]), it can be shown the model completeness of T∗.
dc.languageeng
dc.sourceSeminaire Structures Algébriques Ordonnées, Equipe de Logique Mathématiques, Prépublications.París, Francia: Université de Paris, 2018-2020
dc.subjectModel completeness
dc.subjectReal closed ring
dc.subjectLocal divisibility
dc.titleLocal divisibility and model completeness of a theory of real closed rings
dc.typecomunicación de congreso


Este ítem pertenece a la siguiente institución