dc.creator | Guier Acosta, Jorge Ignacio | |
dc.date.accessioned | 2021-10-31T18:27:18Z | |
dc.date.accessioned | 2022-10-20T00:21:34Z | |
dc.date.available | 2021-10-31T18:27:18Z | |
dc.date.available | 2022-10-20T00:21:34Z | |
dc.date.created | 2021-10-31T18:27:18Z | |
dc.date.issued | 2021-01 | |
dc.identifier | http://www.logique.jussieu.fr/semsao/index.html | |
dc.identifier | https://hdl.handle.net/10669/84950 | |
dc.identifier | 821-B9-128 | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/4532691 | |
dc.description.abstract | Let T∗ be the theory of lattice-ordered rings convex in von Neumann regular real closed f-rings, without minimal idempotents (non zero) that are divisible-projectable and sc-regular. I introduce a binary relation describing local divisibility. If this relation is added to the language of lattice ordered rings with the radical relation associated to the minimal prime spectrum (cf. [12]), it can be shown the model completeness of T∗. | |
dc.language | eng | |
dc.source | Seminaire Structures Algébriques Ordonnées, Equipe de Logique Mathématiques, Prépublications.París, Francia: Université de Paris, 2018-2020 | |
dc.subject | Model completeness | |
dc.subject | Real closed ring | |
dc.subject | Local divisibility | |
dc.title | Local divisibility and model completeness of a theory of real closed rings | |
dc.type | comunicación de congreso | |