dc.creatorCoto Jiménez, Marvin
dc.date.accessioned2022-03-24T16:39:07Z
dc.date.accessioned2022-10-20T00:18:53Z
dc.date.available2022-03-24T16:39:07Z
dc.date.available2022-10-20T00:18:53Z
dc.date.created2022-03-24T16:39:07Z
dc.date.issued2019
dc.identifierhttps://www.mdpi.com/2313-7673/4/2/39
dc.identifier2313-7673
dc.identifierhttps://hdl.handle.net/10669/86280
dc.identifier10.3390/biomimetics4020039
dc.identifier322-B9-105
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4532278
dc.description.abstractSeveral researchers have contemplated deep learning-based post-filters to increase the quality of statistical parametric speech synthesis, which perform a mapping of the synthetic speech to the natural speech, considering the different parameters separately and trying to reduce the gap between them. The Long Short-term Memory (LSTM) Neural Networks have been applied successfully in this purpose, but there are still many aspects to improve in the results and in the process itself. In this paper, we introduce a new pre-training approach for the LSTM, with the objective of enhancing the quality of the synthesized speech, particularly in the spectrum, in a more efficient manner. Our approach begins with an auto-associative training of one LSTM network, which is used as an initialization for the post-filters. We show the advantages of this initialization for the enhancing of the Mel-Frequency Cepstral parameters of synthetic speech. Results show that the initialization succeeds in achieving better results in enhancing the statistical parametric speech spectrum in most cases when compared to the common random initialization approach of the networks.
dc.languageeng
dc.sourceBiomimetics, vol.4(2), pp.1-17.
dc.subjectDeep learning
dc.subjectLong short-term memory (LSTM)
dc.subjectMachine learning
dc.subjectPost-filtering
dc.subjectSignal processing
dc.subjectSpeech synthesis
dc.titleImproving post-filtering of artificial speech using pre-trained LSTM neural networks
dc.typeartículo científico


Este ítem pertenece a la siguiente institución