dc.creatorBezerra, Jamerson
dc.creatorSánchez Chavarría, Adriana Cristina
dc.creatorTall, El Hadji Yaya
dc.date.accessioned2021-11-19T15:24:30Z
dc.date.accessioned2022-10-20T00:14:50Z
dc.date.available2021-11-19T15:24:30Z
dc.date.available2022-10-20T00:14:50Z
dc.date.created2021-11-19T15:24:30Z
dc.date.issued2021-11-01
dc.identifierhttps://arxiv.org/abs/2111.00683
dc.identifierarXiv:2111.00683
dc.identifierhttps://hdl.handle.net/10669/85293
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4531234
dc.description.abstractWe show that the top Lyapunov exponent LE(p) associated with a random product of quasi-periodic cocycles depends real analytically on the transition probabilities p whenever LE(p) is simple. Moreover if the spectrum at p is simple (all Lyapunov exponents having multiplicity one ) then all Lyapunov exponents depend real analytically on p.
dc.languageeng
dc.sourceArxiv, vol.2111, pp.1-17.
dc.subjectSkew product
dc.subjectQuasi-periodic cocycles
dc.subjectRandom Product
dc.subjectLyapunov exponents
dc.titleAnaliticity of the Lyapunov exponents of random products of quasi-periodic cocycles
dc.typepreprint


Este ítem pertenece a la siguiente institución