Costa Rica | artículo científico
dc.creatorLacey, Michael T.
dc.creatorMena Arias, Darío Alberto
dc.creatorReguera, Maria Carmen
dc.date.accessioned2021-11-30T19:28:09Z
dc.date.accessioned2022-10-20T00:11:24Z
dc.date.available2021-11-30T19:28:09Z
dc.date.available2022-10-20T00:11:24Z
dc.date.created2021-11-30T19:28:09Z
dc.date.issued2019
dc.identifierhttps://link.springer.com/article/10.1007/s00041-017-9590-2
dc.identifier1069-5869
dc.identifier1531-5851
dc.identifierhttps://hdl.handle.net/10669/85361
dc.identifier10.1007/s00041-017-9590-2
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4530322
dc.description.abstractThe Bochner–Riesz multipliers are shown to satisfy a range of sparse bounds. The range of sparse bounds increases to the optimal range, as δ increases to the critical value, even assuming only partial information on the Bochner–Riesz conjecture in dimensions n≥3. In dimension n=2, we prove a sharp range of sparse bounds. The method of proof is based upon a ‘single scale’ analysis, and yields the sharpest known weighted estimates for the Bochner–Riesz multipliers in the category of Muckenhoupt weights.
dc.languageeng
dc.sourceJournal of Fourier Analysis and Applications, vol.25 (2), pp.523-537.
dc.subjectBochner-Riesz
dc.subjectMultipliers
dc.subjectSparse bounds
dc.subjectWeighted inequalities
dc.titleSparse bounds for Bochner–Riesz multiplers
dc.typeartículo científico


Este ítem pertenece a la siguiente institución