dc.creatorSánchez Chavarría, Adriana Cristina
dc.creatorViana, Marcelo
dc.date.accessioned2021-11-03T20:10:58Z
dc.date.accessioned2022-10-19T23:29:33Z
dc.date.available2021-11-03T20:10:58Z
dc.date.available2022-10-19T23:29:33Z
dc.date.created2021-11-03T20:10:58Z
dc.date.issued2020
dc.identifierhttps://arxiv.org/abs/1810.03061
dc.identifierhttps://hdl.handle.net/10669/85048
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4518299
dc.description.abstractA recent result of Bocker–Viana asserts that the Lyapunov exponents of compactly supported probability distributions in GL(2, R) depend continuously on the distribution. We investigate the general, possibly concompact case. We prove that the Lyapunov exponents are semi-continuous with respect to the Wasserstein topology, but not with respect to the weak* topology. Moreover, they are not continuous with respect to the Wasserstein topology.
dc.languageeng
dc.subjectLyapunov exponents
dc.subjectLinear cocycles
dc.subjectWasserstein topology
dc.titleLyapunov exponents of probability distributions with non-compact support
dc.typepreprint


Este ítem pertenece a la siguiente institución