dc.creatorTrejos Zelaya, Javier
dc.creatorAmaya Briceño, Luis Eduardo
dc.creatorJiménez Romero, Alejandra
dc.creatorMurillo Fernández, Alex
dc.creatorPiza Volio, Eduardo
dc.creatorVillalobos Arias, Mario Alberto
dc.date.accessioned2020-09-21T16:18:16Z
dc.date.accessioned2022-10-19T23:28:11Z
dc.date.available2020-09-21T16:18:16Z
dc.date.available2022-10-19T23:28:11Z
dc.date.created2020-09-21T16:18:16Z
dc.date.issued2019-08-09
dc.identifierhttps://arxiv.org/abs/2001.01809
dc.identifierhttps://hdl.handle.net/10669/81593
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4517844
dc.description.abstractWe study clustering methods for binary data, first defining aggregation criteria that measure the compactness of clusters. Five new and original methods are introduced, using neighborhoods and population behavior combinatorial optimization metaheuristics: first ones are simulated annealing, threshold accepting and tabu search, and the others are a genetic algorithm and ant colony optimization. The methods are implemented, performing the proper calibration of parameters in the case of heuristics, to ensure good results. From a set of 16 data tables generated by a quasi-Monte Carlo experiment, a comparison is performed for one of the aggregations using L1 dissimilarity, with hierarchical clustering, and a version of k-means: partitioning around medoids or PAM. Simulated annealing perform very well, especially compared to classical methods.
dc.languageen_US
dc.subjectclustering
dc.subjectbinary data
dc.subjectSimulated annealing
dc.subjectthreshold accepting
dc.subjecttabu search
dc.subjectGenetic algorithm
dc.subjectAnt colony
dc.titleClustering binary data by application of combinatorial optimization heuristics
dc.typedocumento de trabajo


Este ítem pertenece a la siguiente institución