dc.creatorLamas, Carlos Alberto
dc.creatorRalko, Arnaud
dc.creatorCabra, Daniel Carlos
dc.creatorPoilblanc, Didier
dc.creatorPujol, Pierre
dc.date2012-07
dc.date2013-07-01T12:05:09Z
dc.identifierhttp://sedici.unlp.edu.ar/handle/10915/27433
dc.identifierissn:0031-9007
dc.descriptionWe prove a ‘‘statistical transmutation’’ symmetry of doped quantum dimer models on the square, triangular, and kagome lattices: the energy spectrum is invariant under a simultaneous change of statistics (i.e., bosonic into fermionic or vice versa) of the holes and of the signs of all the dimer resonance loops. This exact transformation enables us to define the duality equivalence between doped quantum dimer Hamiltonians and provides the analytic framework to analyze dynamical statistical transmutations. We investigate numerically the doping of the triangular quantum dimer model with special focus on the topological Z2 dimer liquid. Doping leads to four (instead of two for the square lattice) inequivalent families of Hamiltonians. Competition between phase separation, superfluidity, supersolidity, and fermi- onic phases is investigated in the four families.
dc.descriptionFacultad de Ciencias Exactas
dc.formatapplication/pdf
dc.languageen
dc.rightshttp://creativecommons.org/licenses/by/2.5/ar/
dc.rightsCreative Commons Attribution 2.5 Argentina (CC BY 2.5)
dc.subjectCiencias Exactas
dc.subjectFísica
dc.subjectdimer model
dc.subjectstatistical transmutation
dc.titleStatistical transmutation in doped quantum dimer models
dc.typeArticulo
dc.typeArticulo


Este ítem pertenece a la siguiente institución