dc.creatorApolloni, Javier
dc.creatorKavka, Carlos
dc.creatorRoggero, Patricia
dc.date2005-05
dc.date2005
dc.date2012-09-19T12:21:58Z
dc.identifierhttp://sedici.unlp.edu.ar/handle/10915/21160
dc.identifierisbn:950-665-337-2
dc.descriptionA fuzzy controller is usually designed by formulating the knowledge of a human expert into a set of linguistic variables and fuzzy rules. As it is well known, the use of prior knowledge can dramatically improve the performance and quality of the fuzzy system design process. In previous works we have introduced the RFV model, a representation for recurrent fuzzy controllers based on Voronoi diagrams that can represent fuzzy systems with synergistic rules, ful lling the completeness property and providing a simple way to introduce prior knowledge. In this work we present our current approach in the study of the inclusion of prior knowledge in the context of the RFV model.
dc.descriptionEje: Inteligencia artificial
dc.descriptionRed de Universidades con Carreras en Informática (RedUNCI)
dc.formatapplication/pdf
dc.format349-356
dc.languageen
dc.relationVII Workshop de Investigadores en Ciencias de la Computación
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsCreative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
dc.subjectCiencias Informáticas
dc.titlePrior knowledge in evolutionary fuzzy recurrent controllers design
dc.typeObjeto de conferencia
dc.typeObjeto de conferencia


Este ítem pertenece a la siguiente institución