Objeto de conferencia
Modelos conexionistas auto-organizados y su aplicación en reconocimiento de patrones
Registro en:
Autor
Seijas, Leticia
Segura, Enrique Carlos
Institución
Resumen
El trabajo en curso tiene por objeto desarrollar técnicas conexionistas para reconocimiento de patrones. A partir del sistema ya desarrollado por el grupo (que consiste básicamente en un modelo híbrido no supervisado -de tipo autoorganizado- seguido de una instancia supervisada) se estudia la introducción de innovaciones que incrementen su potencia y su eficiencia. Las investigaciones en curso giran alrededor de dos frentes: i) preprocesamiento de la entrada:
se consideran opciones a la técnica inicialmente empleada (máscaras de Kirsch), entre ellas el uso de transformadas wavelet y la extracción de componentes principales; ii) estructura del módulo intermedio (no supervisado): analizamos posibles sofisticaciones orientadas a obtener una clasificación más especializada de acuerdo con las características de la distribución de los datos de entrada. La calidad y eficiencia de la propuesta resultante deberán ser luego comparadas con las de los métodos ya existentes. Eje: Inteligencia artificial Red de Universidades con Carreras en Informática (RedUNCI)