dc.creatorBecher, Veronica Andrea
dc.creatorGrigoreff, Serge
dc.date.accessioned2019-09-26T17:53:50Z
dc.date.accessioned2022-10-15T17:00:15Z
dc.date.available2019-09-26T17:53:50Z
dc.date.available2022-10-15T17:00:15Z
dc.date.created2019-09-26T17:53:50Z
dc.date.issued2015-10
dc.identifierBecher, Veronica Andrea; Grigoreff, Serge; Borel and Hausdorff hierarchies in topological spaces of Choquet games and their effectivization; Cambridge University Press; Mathematical Structures In Computer Science; 25; 7; 10-2015; 1490-1519
dc.identifier0960-1295
dc.identifierhttp://hdl.handle.net/11336/84547
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4412526
dc.description.abstractWhat parts of the classical descriptive set theory done in Polish spaces still hold for more general topological spaces, possibly T0 or T1, but not T2 (i.e. not Hausdorff)? This question has been addressed by Selivanov in a series of papers centred on algebraic domains. And recently it has been considered by de Brecht for quasi-Polish spaces, a framework that contains both countably based continuous domains and Polish spaces. In this paper, we present alternative unifying topological spaces, that we call approximation spaces. They are exactly the spaces for which player Nonempty has a stationary strategy in the Choquet game. A natural proper subclass of approximation spaces coincides with the class of quasi-Polish spaces. We study the Borel and Hausdorff difference hierarchies in approximation spaces, revisiting the work done for the other topological spaces. We also consider the problem of effectivization of these results.
dc.languageeng
dc.publisherCambridge University Press
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1017/S096012951300025X
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://www.cambridge.org/core/journals/mathematical-structures-in-computer-science/article/borel-and-hausdorff-hierarchies-in-topological-spaces-of-choquet-games-and-their-effectivization/267CF2C64ECC787C1C4B02E68F07CAD3
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1311.0330
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectBorel Hierarchy
dc.subjectChoquet Games
dc.subjectApproximation Spaces
dc.subjectQuasi Metric Spaces
dc.titleBorel and Hausdorff hierarchies in topological spaces of Choquet games and their effectivization
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución