dc.creatorAngiolini, Juan Francisco
dc.creatorPlachta, Nicolas Daniel
dc.creatorMocskos, Esteban Eduardo
dc.creatorLevi, Valeria
dc.date.accessioned2020-09-15T21:01:28Z
dc.date.accessioned2022-10-15T16:58:54Z
dc.date.available2020-09-15T21:01:28Z
dc.date.available2022-10-15T16:58:54Z
dc.date.created2020-09-15T21:01:28Z
dc.date.issued2015-06
dc.identifierAngiolini, Juan Francisco; Plachta, Nicolas Daniel; Mocskos, Esteban Eduardo; Levi, Valeria; Exploring the Dynamics of Cell Processes through Simulations of Fluorescence Microscopy Experiments; Cell Press; Biophysical Journal; 108; 11; 6-2015; 2613-2618
dc.identifier0006-3495
dc.identifierhttp://hdl.handle.net/11336/114065
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4412375
dc.description.abstractFluorescence correlation spectroscopy (FCS) methods are powerful tools for unveiling the dynamical organization of cells. For simple cases, such as molecules passively moving in a homogeneous media, FCS analysis yields analytical functions that can be fitted to the experimental data to recover the phenomenological rate parameters. Unfortunately, many dynamical processes in cells do not follow these simple models, and in many instances it is not possible to obtain an analytical function through a theoretical analysis of a more complex model. In such cases, experimental analysis can be combined with Monte Carlo simulations to aid in interpretation of the data. In response to this need, we developed a method called FERNET (Fluorescence Emission Recipes and Numerical routines Toolkit) based on Monte Carlo simulations and the MCell-Blender platform, which was designed to treat the reaction-diffusion problem under realistic scenarios. This method enables us to set complex geometries of the simulation space, distribute molecules among different compartments, and define interspecies reactions with selected kinetic constants, diffusion coefficients, and species brightness. We apply this method to simulate single- and multiple-point FCS, photon-counting histogram analysis, raster image correlation spectroscopy, and two-color fluorescence cross-correlation spectroscopy. We believe that this new program could be very useful for predicting and understanding the output of fluorescence microscopy experiments.
dc.languageeng
dc.publisherCell Press
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.bpj.2015.04.014
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://www.cell.com/biophysj/fulltext/S0006-3495(15)00393-8
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectintracelullar dynamics
dc.subjectfluorescences correlation spectroscopy
dc.subjectconfocal microscopy
dc.subjectMCell
dc.titleExploring the Dynamics of Cell Processes through Simulations of Fluorescence Microscopy Experiments
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución