dc.creatorChimento, Luis Pascual
dc.creatorFeinstein, Alexander
dc.date.accessioned2019-04-12T14:28:20Z
dc.date.accessioned2022-10-15T16:56:34Z
dc.date.available2019-04-12T14:28:20Z
dc.date.available2022-10-15T16:56:34Z
dc.date.created2019-04-12T14:28:20Z
dc.date.issued2004-12
dc.identifierChimento, Luis Pascual; Feinstein, Alexander; Power-low expansion in k-essence cosmology; World Scientific; Modern Physics Letters A: Particles and Fields; Gravitation; Cosmology and Nuclear Physics; 19; 10; 12-2004; 761-768
dc.identifier0217-7323
dc.identifierhttp://hdl.handle.net/11336/74200
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4412111
dc.description.abstractWe study spatially flat isotropic universes driven by k-essence. It is shown that Friedmann and k-field equations may be analytically integrated for arbitrary k-field potentials during evolution with a constant baryotropic index. It follows that there is an infinite number of dynamically different k-theories with equivalent kinematics of the gravitational field. We show that there is a large "window" of stable solutions, and that the dust-like behavior separates stable from unstable expansion. Restricting to the family of power law solutions, it is argued that the linear scalar field model, with constant function F, is isomorphic to a model with divergent speed of sound and this makes them less suitable for cosmological modeling than the nonlinear k-field solutions we find in this paper.
dc.languageeng
dc.publisherWorld Scientific
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1142/S0217732304013507
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectCOSMOLOGY
dc.subjectGENERAL RELATIVITY
dc.subjectK-ESSENCE
dc.titlePower-low expansion in k-essence cosmology
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución