dc.creatorBecher, Veronica Andrea
dc.creatorHeiber, Pablo Ariel
dc.date.accessioned2019-02-07T17:42:52Z
dc.date.accessioned2022-10-15T16:55:57Z
dc.date.available2019-02-07T17:42:52Z
dc.date.available2022-10-15T16:55:57Z
dc.date.created2019-02-07T17:42:52Z
dc.date.issued2011-09
dc.identifierBecher, Veronica Andrea; Heiber, Pablo Ariel; On extending de Bruijn sequences; Elsevier Science; Information Processing Letters; 111; 18; 9-2011; 930-932
dc.identifier0020-0190
dc.identifierhttp://hdl.handle.net/11336/69649
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4412049
dc.description.abstractWe give a complete proof of the following theorem: Every de Bruijn sequence of order n in at least three symbols can be extended to a de Bruijn sequence of order n+1. Every de Bruijn sequence of order n in two symbols can not be extended to order n+1, but it can be extended to order n+2. © 2011 Elsevier B.V.
dc.languageeng
dc.publisherElsevier Science
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/https://dx.doi.org/10.1016/j.ipl.2011.06.013
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0020019011001840
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectCOMBINATORIAL PROBLEMS
dc.subjectDE BRUIJN SEQUENCES
dc.subjectGRAPH ALGORITHMS
dc.subjectWORD PROBLEMS
dc.titleOn extending de Bruijn sequences
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución