dc.creatorCortiñas, Guillermo Horacio
dc.date.accessioned2022-02-02T13:43:02Z
dc.date.accessioned2022-10-15T16:37:43Z
dc.date.available2022-02-02T13:43:02Z
dc.date.available2022-10-15T16:37:43Z
dc.date.created2022-02-02T13:43:02Z
dc.date.issued2006-12
dc.identifierCortiñas, Guillermo Horacio; The obstruction to excision in K-theory and in cyclic homology; Springer; Inventiones Mathematicae; 164; 1; 12-2006; 143-173
dc.identifier0020-9910
dc.identifierhttp://hdl.handle.net/11336/151169
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4410181
dc.description.abstractLet f: A → B be a ring homomorphism of not necessarily unital rings and I A an ideal which is mapped by f isomorphically to an ideal of B. The obstruction to excision in K-theory is the failure of the map between relative K-groups K *(A:I)→K *(B:f(I)) to be an isomorphism; it is measured by the birelative groups K *(A,B:I) . Similarly the groups HN *(A,B:I) measure the obstruction to excision in negative cyclic homology. We show that the rational Jones-Goodwillie Chern character induces an isomorphism ch *:K *(A,B:I)⊗ ℚ →simHN * A ⊗ℚ,B ⊗ℚ:I ⊗ℚ.
dc.languageeng
dc.publisherSpringer
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs00222-005-0473-9
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1007/s00222-005-0473-9
dc.relationinfo:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/math/0111096
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectRING HOMOMORPHISM
dc.subjectUNITAL RING
dc.subjectCHERN CHARACTER
dc.subjectCYCLIC HOMOLOGY
dc.subjectNEGATIVE CYCLIC HOMOLOGY
dc.titleThe obstruction to excision in K-theory and in cyclic homology
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución