dc.creatorTagliazucchi, Mario Eugenio
dc.creatorMéndez de Leo, Lucila Paula
dc.creatorCadranel, Alejandro
dc.creatorBaraldo Victorica, Luis Mario
dc.creatorVolker, Edgar
dc.creatorBonazzola, Cecilia
dc.creatorCalvo, Ernesto Julio
dc.creatorZamlynny, Vlad
dc.date.accessioned2019-03-12T20:46:14Z
dc.date.accessioned2022-10-15T16:37:29Z
dc.date.available2019-03-12T20:46:14Z
dc.date.available2022-10-15T16:37:29Z
dc.date.created2019-03-12T20:46:14Z
dc.date.issued2010-11
dc.identifierTagliazucchi, Mario Eugenio; Méndez de Leo, Lucila Paula; Cadranel, Alejandro; Baraldo Victorica, Luis Mario; Volker, Edgar; et al.; PM IRRAS spectroelectrochemistry of layer-by-layer self-assembled polyelectrolyte multilayers; Elsevier Science Sa; Journal of Electroanalytical Chemistry; 649; 1-2; 11-2010; 110-118
dc.identifier1572-6657
dc.identifierhttp://hdl.handle.net/11336/71469
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4410151
dc.description.abstractIn situ polarization modulation infrared reflection absorption spectroscopy (PM IRRAS) has been used to study layer-by-layer self-assembled films made of a novel redox polymer bearing an osmium pentacyano pyridine complex (PAH-OsCN) and polyacrylic acid at different electrode potentials and solution compositions. PM IRRAS provides information on the oxidation state of the osmium complex, the fraction of protonated carboxylates and the content of IR-active counterions (such as nitrate) as well as water content (hydratation of the multilayer). It has an advantage over SNIFTIRS because it measures the absolute IR-signal arising from the molecular species at the interface rather than its variation with respect to a reference state. For instance, we show that only a fraction of the total number of redox sites responds to changes in the electrode potential as expected from the Nernst equation. The remaining sites are trapped in the Os(II) or Os(III) states and can only be oxidized/reduced by chemical agents in solution. We also present spectroscopic evidence that nitrate ions enter into the film during oxidation and leave during reduction. The number of these anions involved in the first process is larger than that participating in the latter and hence nitrate accumulates within the film. This finding is analyzed in terms of two possible mechanisms. © 2009 Elsevier B.V. All rights reserved.
dc.languageeng
dc.publisherElsevier Science Sa
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.jelechem.2010.02.013
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S1572665710000652
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectINFRARED SPECTROSCOPY
dc.subjectION EXCHANGE
dc.subjectPENTACYANOOSMATE
dc.subjectPM IRRAS
dc.subjectPOLYELECTROLYTE MULTILAYER
dc.subjectREDOX POLYMER
dc.titlePM IRRAS spectroelectrochemistry of layer-by-layer self-assembled polyelectrolyte multilayers
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución