dc.creatorPerl, Yonatan Sanz
dc.creatorBocaccio, Hernán
dc.creatorPérez Ipiña, Ignacio
dc.creatorZamberlán, Federico
dc.creatorPiccinini, Juan Ignacio
dc.creatorLaufs, Helmut
dc.creatorKringelbach, Morten
dc.creatorDeco, Gustavo
dc.creatorTagliazucchi, Enzo Rodolfo
dc.date.accessioned2021-11-04T16:15:06Z
dc.date.accessioned2022-10-15T16:27:19Z
dc.date.available2021-11-04T16:15:06Z
dc.date.available2022-10-15T16:27:19Z
dc.date.created2021-11-04T16:15:06Z
dc.date.issued2020-12
dc.identifierPerl, Yonatan Sanz; Bocaccio, Hernán; Pérez Ipiña, Ignacio; Zamberlán, Federico; Piccinini, Juan Ignacio; et al.; Generative Embeddings of Brain Collective Dynamics Using Variational Autoencoders; American Physical Society; Physical Review Letters; 125; 23; 12-2020; 1-6
dc.identifier0031-9007
dc.identifierhttp://hdl.handle.net/11336/146026
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4409093
dc.description.abstractWe consider the problem of encoding pairwise correlations between coupled dynamical systems in a low-dimensional latent space based on few distinct observations. We use variational autoencoders (VAEs) to embed temporal correlations between coupled nonlinear oscillators that model brain states in the wake-sleep cycle into a two-dimensional manifold. Training a VAE with samples generated using two different parameter combinations results in an embedding that encodes the repertoire of collective dynamics, as well as the topology of the underlying connectivity network. We first follow this approach to infer the trajectory of brain states measured from wakefulness to deep sleep from the two end points of this trajectory; then, we show that the same architecture was capable of representing the pairwise correlations of generic Landau-Stuart oscillators coupled by complex network topology.
dc.languageeng
dc.publisherAmerican Physical Society
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1103/PhysRevLett.125.238101
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.125.238101
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectAutoencoders
dc.subjectDynamics
dc.subjectConsciousness
dc.subjectMachine Learning
dc.titleGenerative Embeddings of Brain Collective Dynamics Using Variational Autoencoders
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución