dc.creatorDantas, Sheldon
dc.creatorKim, Sun Kwang
dc.creatorLee, Han Ju
dc.creatorMazzitelli, Martin Diego
dc.date.accessioned2021-02-24T00:01:58Z
dc.date.accessioned2022-10-15T16:16:34Z
dc.date.available2021-02-24T00:01:58Z
dc.date.available2022-10-15T16:16:34Z
dc.date.created2021-02-24T00:01:58Z
dc.date.issued2020-01-02
dc.identifierDantas, Sheldon; Kim, Sun Kwang; Lee, Han Ju; Mazzitelli, Martin Diego; Strong subdifferentiability and local Bishop–Phelps–Bollobás properties; Real Acad Ciencias Exactas Fisicas & Naturales; Revista de la Real Academia de Ciencias Exactas Fisicas y Naturales Serie A-matematicas; 114; 47; 2-1-2020; 1-16
dc.identifier1578-7303
dc.identifierhttp://hdl.handle.net/11336/126401
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4407984
dc.description.abstractSome local versions of the Bishop–Phelps–Bollobás property for operators have been recently presented in Dantas et al. (J Math Anal Appl 468(1):304–323, 2018). In the present article, we continue studying these properties for multilinear mappings. We show some differences between the local and uniform versions of these and also provide some interesting examples which show that this study is not just a mere generalization of the linear case. As a consequence of our results, we get that, for 2 < p, q< ∞, the norm of the projective tensor product ℓp⊗ ^ πℓq is strongly subdifferentiable. Moreover, we present necessary and sufficient conditions for the norm of a Banach space Y to be strongly subdifferentiable through the study of these properties for bilinear mappings on ℓ1N×Y.
dc.languageeng
dc.publisherReal Acad Ciencias Exactas Fisicas & Naturales
dc.relationinfo:eu-repo/semantics/altIdentifier/url/http://link.springer.com/10.1007/s13398-019-00741-1
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s13398-019-00741-1
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1905.08483
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectBANACH SPACE
dc.subjectBISHOP–PHELPS–BOLLOBÁS PROPERTY
dc.subjectNORM ATTAINING OPERATORS
dc.titleStrong subdifferentiability and local Bishop–Phelps–Bollobás properties
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución