dc.creatorLlop Orzan, Pamela Nerina
dc.creatorForzani, Liliana Maria
dc.creatorFraiman, Jacob Ricardo
dc.date.accessioned2019-01-12T12:59:49Z
dc.date.accessioned2022-10-15T16:12:50Z
dc.date.available2019-01-12T12:59:49Z
dc.date.available2022-10-15T16:12:50Z
dc.date.created2019-01-12T12:59:49Z
dc.date.issued2011-01
dc.identifierLlop Orzan, Pamela Nerina; Forzani, Liliana Maria; Fraiman, Jacob Ricardo; On local times, density estimation and supervised classification from functional data; Elsevier Inc; Journal Of Multivariate Analysis; 102; 1; 1-2011; 73-86
dc.identifier0047-259X
dc.identifierhttp://hdl.handle.net/11336/67964
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4407567
dc.description.abstractIn this paper, we define a n-consistent nonparametric estimator for the marginal density function of an order one stationary process built up from a sample of i.i.d continuous time trajectories. Under mild conditions we obtain strong consistency, strong orders of convergence and derive the asymptotic distribution of the estimator. We extend some of the results to the non-stationary case. We propose a nonparametric classification rule based on local times (occupation measure) and include some simulations studies.
dc.languageeng
dc.publisherElsevier Inc
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.jmva.2010.08.002
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectFUNCTIONAL DATA
dc.subjectDENSITY ESTIMATION
dc.subjectNEAREST NEIGHBOR
dc.titleOn local times, density estimation and supervised classification from functional data
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución