dc.creatorRisso, Mariano Angel
dc.creatorBhouri, Neila
dc.creatorRubiales, Aldo Jose
dc.creatorLotito, Pablo Andres
dc.date.accessioned2021-09-09T14:53:24Z
dc.date.accessioned2022-10-15T16:00:46Z
dc.date.available2021-09-09T14:53:24Z
dc.date.available2022-10-15T16:00:46Z
dc.date.created2021-09-09T14:53:24Z
dc.date.issued2020-01
dc.identifierRisso, Mariano Angel; Bhouri, Neila; Rubiales, Aldo Jose; Lotito, Pablo Andres; A constrained filtering algorithm for freeway traffic state estimation; Taylor and Francis Ltd.; Transportmetrica A: Transport Science; 16; 2; 1-2020; 316-336
dc.identifier1812-8602
dc.identifierhttp://hdl.handle.net/11336/139995
dc.identifier2324-9943
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4406254
dc.description.abstractA real-time traffic state estimation algorithm is developed and applied to a freeway. The evolution of the traffic is defined by a second-order macroscopic model which computes, for each section of the freeway, the density, and the mean speed according to several nonlinear equations. Different extensions of the Kalman method were already applied to this model, though none of them considers the natural constraints in the state variables. In this work, a new method that incorporates those natural constraints is applied to the macroscopic model obtaining better results. To validate the proposed method, a simulation over a freeway section was made using two different tools: the macroscopic simulator called METANET and the microscopic simulator called SUMO. Promising results were obtained using both approaches.
dc.languageeng
dc.publisherTaylor and Francis Ltd.
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/full/10.1080/23249935.2018.1549618
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1080/23249935.2018.1549618
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectFREEWAY
dc.subjectINTERVAL UNSCENTED KALMAN FILTER
dc.subjectKALMAN FILTER
dc.subjectTRAFFIC STATE ESTIMATION
dc.titleA constrained filtering algorithm for freeway traffic state estimation
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución