dc.creatorde la Llave, Ezequiel Pablo
dc.creatorMolinero, Valeria
dc.creatorScherlis Perel, Damian Ariel
dc.date.accessioned2019-02-21T19:54:03Z
dc.date.accessioned2022-10-15T15:58:21Z
dc.date.available2019-02-21T19:54:03Z
dc.date.available2022-10-15T15:58:21Z
dc.date.created2019-02-21T19:54:03Z
dc.date.issued2012-01
dc.identifierde la Llave, Ezequiel Pablo; Molinero, Valeria; Scherlis Perel, Damian Ariel; Role of confinement and surface affinity on filling mechanisms and sorption hysteresis of water in nanopores; American Chemical Society; Journal of Physical Chemistry C; 116; 2; 1-2012; 1833-1840
dc.identifier1932-7447
dc.identifierhttp://hdl.handle.net/11336/70647
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4405987
dc.description.abstractThe liquid-vapor transition in cylindrical pores is studied as a function of pore size and hydrophilicity through molecular dynamics simulations with the mW coarse-grained model of water. We identify two distinct filling mechanisms, depending on whether the water-pore interaction is smaller or larger than the water-water interaction. In the former case (that we term hydrophobic pore), the formation of the condensed phase proceeds gradually with filling, through the nucleation of a water cluster which grows toward the center of the cavity. In hydrophilic pores, instead, the condensed phase develops in conditions of supersaturation, which in principle become more extreme with increasing pore radius and surface affinity. For highly hydrophilic interfaces (those with adsorption energy for water above 10 kcal/mol), the equilibrium and dynamical properties of water in confinement turn out to be practically independent of water affinity.
dc.languageeng
dc.publisherAmerican Chemical Society
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1021/jp206580z
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/jp206580z
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectNANOPORE
dc.subjectCAPILLARY CONDENSATION
dc.subjectSORPTION ISOTHERM
dc.subjectSORPTION HYSTERESIS
dc.titleRole of confinement and surface affinity on filling mechanisms and sorption hysteresis of water in nanopores
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución