dc.creatorOchoa Arango, Jesús Alonso
dc.creatorRojas, Nadina Elizabeth
dc.date.accessioned2020-12-02T20:51:49Z
dc.date.accessioned2022-10-15T15:48:41Z
dc.date.available2020-12-02T20:51:49Z
dc.date.available2022-10-15T15:48:41Z
dc.date.created2020-12-02T20:51:49Z
dc.date.issued2019-09
dc.identifierOchoa Arango, Jesús Alonso; Rojas, Nadina Elizabeth; The Lie algebra of derivations of a current Lie algebra; Taylor & Francis; Communications In Algebra; 48; 2; 9-2019; 625-637
dc.identifier0092-7872
dc.identifierhttp://hdl.handle.net/11336/119678
dc.identifier1532-4125
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4405068
dc.description.abstractLet K be a field of characteristic zero, g be a finite dimensional K-Lie algebra and let A be a finite dimensional associative and commutative K-algebra with unit. We describe the structure of the Lie algebra of derivations of the current Lie algebra (Formula presented.), denoted by Der(gA). Furthermore, we obtain the Levi decomposition of Der(gA. As a consequence of the last result, if hm is the Heisenberg Lie algebra of dimension 2m + 1, we obtain a faithful representation of Der(hm,k of the current truncated Heisenberg Lie algebra (Formula presented.) for all positive integer k.
dc.languageeng
dc.publisherTaylor & Francis
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1080/00927872.2019.1654490
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/full/10.1080/00927872.2019.1654490
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectAUTOMORPHISM GROUP
dc.subjectCURRENT LIE ALGEBRA
dc.subjectDERIVATION ALGEBRA
dc.subjectHEISENBERG LIE ALGEBRA
dc.subjectLEVI’S DECOMPOSITION
dc.subjectRADICAL
dc.titleThe Lie algebra of derivations of a current Lie algebra
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución