dc.creatorAllegrini, Franco
dc.creatorBraga, Jez W. B.
dc.creatorMoreira, Alessandro C. O.
dc.creatorOlivieri, Alejandro Cesar
dc.date.accessioned2019-11-08T18:01:17Z
dc.date.accessioned2022-10-15T15:35:08Z
dc.date.available2019-11-08T18:01:17Z
dc.date.available2022-10-15T15:35:08Z
dc.date.created2019-11-08T18:01:17Z
dc.date.issued2018-06
dc.identifierAllegrini, Franco; Braga, Jez W. B.; Moreira, Alessandro C. O.; Olivieri, Alejandro Cesar; Error Covariance Penalized Regression: A novel multivariate model combining penalized regression with multivariate error structure; Elsevier Science; Analytica Chimica Acta; 1011; 6-2018; 20-27
dc.identifier0003-2670
dc.identifierhttp://hdl.handle.net/11336/88366
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4403627
dc.description.abstractA new multivariate regression model, named Error Covariance Penalized Regression (ECPR) is presented. Following a penalized regression strategy, the proposed model incorporates information about the measurement error structure of the system, using the error covariance matrix (ECM) as a penalization term. Results are reported from both simulations and experimental data based on replicate mid and near infrared (MIR and NIR) spectral measurements. The results for ECPR are better under non-iid conditions when compared with traditional first-order multivariate methods such as ridge regression (RR), principal component regression (PCR) and partial least-squares regression (PLS).
dc.languageeng
dc.publisherElsevier Science
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0003267018301739
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.aca.2018.02.002
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectERROR COVARIANCE MATRIX
dc.subjectMULTIVARIATE CALIBRATION
dc.subjectPENALIZED REGRESSION
dc.titleError Covariance Penalized Regression: A novel multivariate model combining penalized regression with multivariate error structure
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución