dc.creatorGuccione, Jorge Alberto
dc.creatorGuccione, Juan Jose
dc.creatorVendramin, Claudio Leandro
dc.date.accessioned2019-11-11T18:05:15Z
dc.date.accessioned2022-10-15T15:30:45Z
dc.date.available2019-11-11T18:05:15Z
dc.date.available2022-10-15T15:30:45Z
dc.date.created2019-11-11T18:05:15Z
dc.date.issued2018-07
dc.identifierGuccione, Jorge Alberto; Guccione, Juan Jose; Vendramin, Claudio Leandro; Yang–Baxter operators in symmetric categories; Taylor & Francis; Communications In Algebra; 46; 7; 7-2018; 2811-2845
dc.identifier0092-7872
dc.identifierhttp://hdl.handle.net/11336/88490
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4403125
dc.description.abstractWe introduce non-degenerate solutions of the Yang–Baxter equation in the setting of symmetric monoidal categories. Our theory includes non-degenerate set-theoretical solutions as basic examples. However, infinite families of non-degenerate solutions (that are not of set-theoretical type) appear. As in the classical theory of Etingof, Schedler, and Soloviev, non-degenerate solutions are classified in terms of invertible 1-cocycles. Braces and matched pairs of cocommutative Hopf algebras (or braiding operators) are also generalized to the context of symmetric monoidal categories and turn out to be equivalent to invertible 1-cocycles.
dc.languageeng
dc.publisherTaylor & Francis
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1080/00927872.2017.1399411
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/full/10.1080/00927872.2017.1399411
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectCOALGEBRAS
dc.subjectYANG-BAXTER EQUATION
dc.titleYang–Baxter operators in symmetric categories
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución