dc.creatorReggiani, Silvio Nicolás
dc.date.accessioned2019-10-31T19:32:47Z
dc.date.accessioned2022-10-15T15:24:15Z
dc.date.available2019-10-31T19:32:47Z
dc.date.available2022-10-15T15:24:15Z
dc.date.created2019-10-31T19:32:47Z
dc.date.issued2018-10
dc.identifierReggiani, Silvio Nicolás; The index of symmetry of three-dimensional Lie groups with a left-invariant metric; De Gruyter; Advances In Geometry; 18; 4; 10-2018; 395-404
dc.identifier1615-7168
dc.identifierhttp://hdl.handle.net/11336/87769
dc.identifier1615-715X
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4402438
dc.description.abstractWe determine the index of symmetry of 3-dimensional unimodular Lie groups with a left-invariant metric. In particular, we prove that every 3-dimensional unimodular Lie group admits a left-invariant metric with positive index of symmetry. We also study the geometry of the quotients by the so-called foliation of symmetry, and we explain in what cases the group fibers over a 2-dimensional space of constant curvature.
dc.languageeng
dc.publisherDe Gruyter
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1515/advgeom-2017-0061
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://www.degruyter.com/view/j/advgeom.2018.18.issue-4/advgeom-2017-0061/advgeom-2017-0061.xml
dc.rightshttps://creativecommons.org/licenses/by/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectDISTRIBUTION OF SYMMETRY
dc.subjectINDEX OF SYMMETRY
dc.subjectNATURALLY REDUCTIVE SPACE
dc.subjectUNIMODULAR LIE GROUP
dc.titleThe index of symmetry of three-dimensional Lie groups with a left-invariant metric
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución