dc.creatorLauret, Emilio Agustin
dc.creatorRossi Bertone, Fiorela
dc.date.accessioned2018-11-14T18:28:08Z
dc.date.accessioned2022-10-15T15:20:31Z
dc.date.available2018-11-14T18:28:08Z
dc.date.available2022-10-15T15:20:31Z
dc.date.created2018-11-14T18:28:08Z
dc.date.issued2018-08-27
dc.identifierLauret, Emilio Agustin; Rossi Bertone, Fiorela; Weight multiplicity formulas for bivariate representations of classical Lie algebras; American Institute of Physics; Journal of Mathematical Physics; 59; 8; 27-8-2018; 1-13
dc.identifier0022-2488
dc.identifierhttp://hdl.handle.net/11336/64494
dc.identifier1089-7658
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4402097
dc.description.abstractA bivariate representation of a complex simple Lie algebra is an irreducible representation whose highest weight is given by a combination of the first two fundamental weights. For a complex classical Lie algebra, we establish an expression for the weight multiplicities of bivariate representations.
dc.languageeng
dc.publisherAmerican Institute of Physics
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://aip.scitation.org/doi/pdf/10.1063/1.4993851?class=pdf
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1063/1.5043305
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectCompact Lie Groups
dc.subjectWeight Multiplicities
dc.subjectClassical Lie Algebras
dc.titleWeight multiplicity formulas for bivariate representations of classical Lie algebras
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución