dc.creator | Carando, Daniel Germán | |
dc.creator | Lassalle, Silvia Beatriz | |
dc.creator | Mazzitelli, Martin Diego | |
dc.date.accessioned | 2019-02-06T21:57:50Z | |
dc.date.accessioned | 2022-10-15T15:18:11Z | |
dc.date.available | 2019-02-06T21:57:50Z | |
dc.date.available | 2022-10-15T15:18:11Z | |
dc.date.created | 2019-02-06T21:57:50Z | |
dc.date.issued | 2012-10 | |
dc.identifier | Carando, Daniel Germán; Lassalle, Silvia Beatriz; Mazzitelli, Martin Diego; On the polynomial lindenstrauss theorem; Academic Press Inc Elsevier Science; Journal of Functional Analysis; 263; 7; 10-2012; 1809-1824 | |
dc.identifier | 0022-1236 | |
dc.identifier | http://hdl.handle.net/11336/69607 | |
dc.identifier | CONICET Digital | |
dc.identifier | CONICET | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/4401839 | |
dc.description.abstract | Under certain hypotheses on the Banach space X, we show that the set of N-homogeneous polynomials from X to any dual space, whose Aron-Berner extensions are norm attaining, is dense in the space of all continuous N-homogeneous polynomials. To this end we prove an integral formula for the duality between tensor products and polynomials. We also exhibit examples of Lorentz sequence spaces for which there is no polynomial Bishop-Phelps theorem, but our results apply. Finally we address quantitative versions, in the sense of Bollobás, of these results. | |
dc.language | eng | |
dc.publisher | Academic Press Inc Elsevier Science | |
dc.relation | info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0022123612002443 | |
dc.relation | info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.jfa.2012.06.014 | |
dc.relation | info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1206.3218 | |
dc.rights | https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.subject | Integral Formula | |
dc.subject | Lindenstrauss Type Theorems | |
dc.subject | Norm Attaining Multilinear And Polynomials Mappings | |
dc.title | On the polynomial lindenstrauss theorem | |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:ar-repo/semantics/artículo | |
dc.type | info:eu-repo/semantics/publishedVersion | |