dc.creatorCarando, Daniel Germán
dc.creatorLassalle, Silvia Beatriz
dc.creatorMazzitelli, Martin Diego
dc.date.accessioned2019-02-06T21:57:50Z
dc.date.accessioned2022-10-15T15:18:11Z
dc.date.available2019-02-06T21:57:50Z
dc.date.available2022-10-15T15:18:11Z
dc.date.created2019-02-06T21:57:50Z
dc.date.issued2012-10
dc.identifierCarando, Daniel Germán; Lassalle, Silvia Beatriz; Mazzitelli, Martin Diego; On the polynomial lindenstrauss theorem; Academic Press Inc Elsevier Science; Journal of Functional Analysis; 263; 7; 10-2012; 1809-1824
dc.identifier0022-1236
dc.identifierhttp://hdl.handle.net/11336/69607
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4401839
dc.description.abstractUnder certain hypotheses on the Banach space X, we show that the set of N-homogeneous polynomials from X to any dual space, whose Aron-Berner extensions are norm attaining, is dense in the space of all continuous N-homogeneous polynomials. To this end we prove an integral formula for the duality between tensor products and polynomials. We also exhibit examples of Lorentz sequence spaces for which there is no polynomial Bishop-Phelps theorem, but our results apply. Finally we address quantitative versions, in the sense of Bollobás, of these results.
dc.languageeng
dc.publisherAcademic Press Inc Elsevier Science
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0022123612002443
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.jfa.2012.06.014
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1206.3218
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectIntegral Formula
dc.subjectLindenstrauss Type Theorems
dc.subjectNorm Attaining Multilinear And Polynomials Mappings
dc.titleOn the polynomial lindenstrauss theorem
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución