dc.creatorHartzstein, Silvia Inés
dc.creatorViviani, Beatriz Eleonora
dc.date.accessioned2020-03-21T15:29:03Z
dc.date.accessioned2022-10-15T15:16:53Z
dc.date.available2020-03-21T15:29:03Z
dc.date.available2022-10-15T15:16:53Z
dc.date.created2020-03-21T15:29:03Z
dc.date.issued2003-03
dc.identifierHartzstein, Silvia Inés; Viviani, Beatriz Eleonora; On the composition of the integral and derivative operators of functional order; Universitatis Carolinae; Commentationes Mathematicae; 3-2003; 99-120
dc.identifier0010-2628
dc.identifierhttp://hdl.handle.net/11336/100580
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4401689
dc.description.abstractIn this work we show that the composition of the integral and derivative operators of order phi, T_phi = D_phi◦I_phi, is a singular integral operator.This result in addition with the results obtained in [HV2] of boundedness of I_phi and D_phi or the T1-theorems proved in [HV1] yield the fact that T_phi is a Calderón-Zygmund operator bounded on the generalized Besov and Triebel-Lizorkin spaces of functional order.
dc.languageeng
dc.publisherUniversitatis Carolinae
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectFRACTIONAL INTEGRAL OPERATORS
dc.subjectFRACTIONAL DEIVATIVE OPERATORS
dc.subjectBESOV AND TRIEBEL-LIZORKING SPACES
dc.subjectCALDERÓN_ZYGMUND OPERATORS
dc.titleOn the composition of the integral and derivative operators of functional order
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución