dc.creatorØrsted, Bent
dc.creatorVargas, Jorge Antonio
dc.date.accessioned2021-10-13T18:18:47Z
dc.date.accessioned2022-10-15T15:12:56Z
dc.date.available2021-10-13T18:18:47Z
dc.date.available2022-10-15T15:12:56Z
dc.date.created2021-10-13T18:18:47Z
dc.date.issued2020-12-01
dc.identifierØrsted, Bent; Vargas, Jorge Antonio; Branching problems in reproducing kernel spaces; Duke University Press; Duke Mathematical Journal; 169; 18; 1-12-2020; 3477-3537
dc.identifier0012-7094
dc.identifierhttp://hdl.handle.net/11336/143434
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4401233
dc.description.abstractFor a semisimple Lie group G satisfying the equal-rank condition, the most basic family of unitary irreducible representations is the discrete series found by Harish-Chandra. In our work here we study some of the branching laws for discrete series when restricted to a subgroup H of the same type by combining classical results with recent work of Kobayashi; in particular, we prove discrete decomposability under Harish-Chandra’s condition of cusp form on the reproducing kernel. We show a relation between discrete decomposability and representing certain intertwining operators in terms of differential operators.
dc.languageeng
dc.publisherDuke University Press
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://projecteuclid.org/journals/duke-mathematical-journal/volume-169/issue-18/Branching-problems-in-reproducing-kernel-spaces/10.1215/00127094-2020-0032.short
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1215/00127094-2020-0032
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectDiscrete series
dc.subjectBranching laws
dc.subjectAdmissible restriction
dc.subjectReproducing kernel
dc.titleBranching problems in reproducing kernel spaces
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución