dc.creatorBrasco, Lorenzo
dc.creatorSalort, Ariel Martin
dc.date.accessioned2020-10-27T16:04:23Z
dc.date.accessioned2022-10-15T15:12:27Z
dc.date.available2020-10-27T16:04:23Z
dc.date.available2022-10-15T15:12:27Z
dc.date.created2020-10-27T16:04:23Z
dc.date.issued2019-08
dc.identifierBrasco, Lorenzo; Salort, Ariel Martin; A note on homogeneous Sobolev spaces of fractional order; Springer Heidelberg; Annali Di Matematica Pura Ed Applicata; 198; 4; 8-2019; 1295-1330
dc.identifier0373-3114
dc.identifierhttp://hdl.handle.net/11336/116925
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4401184
dc.description.abstractWe consider a homogeneous fractional Sobolev space obtained by completion of the space of smooth test functions, with respect to a Sobolev–Slobodeckiĭ norm. We compare it to the fractional Sobolev space obtained by the K-method in real interpolation theory. We show that the two spaces do not always coincide and give some sufficient conditions on the open sets for this to happen. We also highlight some unnatural behaviors of the interpolation space. The treatment is as self-contained as possible.
dc.languageeng
dc.publisherSpringer Heidelberg
dc.relationinfo:eu-repo/semantics/altIdentifier/url/http://link.springer.com/10.1007/s10231-018-0817-x
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s10231-018-0817-x
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectFRACTIONAL SOBOLEV SPACES
dc.subjectNONLOCAL OPERATORS
dc.subjectPOINCARÉ INEQUALITY
dc.subjectREAL INTERPOLATION
dc.titleA note on homogeneous Sobolev spaces of fractional order
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución