dc.creatorLanza, Mario
dc.creatorPalumbo, Felix Roberto Mario
dc.creatorShi, Yuanyuan
dc.creatorAguirre, Fernando Leonel
dc.creatorBoyeras Baldomá, Santiago
dc.creatorYuan, Bin
dc.creatorYalon, Eilam
dc.creatorMoreno, Enrique
dc.creatorWu, Tianru
dc.creatorRoldan, Juan B.
dc.date.accessioned2022-08-18T18:15:03Z
dc.date.accessioned2022-10-15T15:12:25Z
dc.date.available2022-08-18T18:15:03Z
dc.date.available2022-10-15T15:12:25Z
dc.date.created2022-08-18T18:15:03Z
dc.date.issued2021-08-12
dc.identifierLanza, Mario; Palumbo, Felix Roberto Mario; Shi, Yuanyuan; Aguirre, Fernando Leonel; Boyeras Baldomá, Santiago; et al.; Temperature of Conductive Nanofilaments in Hexagonal Boron Nitride Based Memristors Showing Threshold Resistive Switching; John Wiley and Sons Inc; Advanced Electronic Materials; 2021; 12-8-2021; 1-7
dc.identifier2199-160X
dc.identifierhttp://hdl.handle.net/11336/166055
dc.identifier2199-160X
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4401179
dc.description.abstractTwo-terminal metal/insulator/metal (MIM) memristors exhibiting threshold resistive switching (RS) can develop advanced key tasks in solid-state nano/ micro-electronic circuits, such as selectors and integrate-and-fire electronic neurons. MIM-like memristors using multilayer hexagonal boron nitride (h-BN) as dielectric are especially interesting because they have shown threshold RS with ultra-low energy consumption per state transition down to the zeptojoule regime. However, the factors enabling stable threshold RS at such low operation energies are still not fully understood. Here it is shown that the threshold RS in 150 nm × 150 nm Au/Ag/h-BN/Au memristors is especially stable because the temperature in the h-BN stack during operation (i.e., at low currents ≈1 μA) is very low (i.e., ≈310 K), due to the high in-plane thermal conductivity of h-BN and its low thickness. Only when the device is operated at higher currents (i.e., ≈200 μA) the temperatures at the h-BN increase remarkably (i.e., >500 K), which produce a stable non-volatile conductive nanofilament (CNF). This work can bring new insights to understand the performance of 2D materials based RS devices, and help to develop the integration of 2D materials in high-density nanoelectronics.
dc.languageeng
dc.publisherJohn Wiley and Sons Inc
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/10.1002/aelm.202100580
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1002/aelm.202100580
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectCONDUCTIVE NANO-FILAMENTS
dc.subjectHEXAGONAL BORON NITRIDE
dc.subjectMEMRISTOR
dc.subjectTEMPERATURE CALCULATION
dc.subjectTHRESHOLD RESISTIVE SWITCHING
dc.titleTemperature of Conductive Nanofilaments in Hexagonal Boron Nitride Based Memristors Showing Threshold Resistive Switching
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución