dc.creatorMudarra Navarro, Azucena Marisol
dc.creatorGil Rebaza, Arles Víctor
dc.creatorSalcedo Rodriguez, Karen Lizeth
dc.creatorMelo Quintero, Jhon Jaither
dc.creatorRodrÍguez Torres, Claudia Elena
dc.creatorWeissmann, Mariana Dorotea
dc.creatorErrico, Leonardo Antonio
dc.date.accessioned2021-10-15T00:26:30Z
dc.date.accessioned2022-10-15T15:12:12Z
dc.date.available2021-10-15T00:26:30Z
dc.date.available2022-10-15T15:12:12Z
dc.date.created2021-10-15T00:26:30Z
dc.date.issued2019-08-13
dc.identifierMudarra Navarro, Azucena Marisol; Gil Rebaza, Arles Víctor; Salcedo Rodriguez, Karen Lizeth; Melo Quintero, Jhon Jaither; RodrÍguez Torres, Claudia Elena; et al.; Structural, electronic and magnetic properties and hyperfine interactions at the Fe sites of the spinel TiFe 2 O 4 : Ab Initio, XANES and mössbauer study; American Chemical Society; Journal of Physical Chemistry C; 123; 35; 13-8-2019; 21694–21703
dc.identifier1932-7447
dc.identifierhttp://hdl.handle.net/11336/143709
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4401152
dc.description.abstractWe present here an experimental and theoretical study of the Ti-ferrite (TiFe2O4, ülvospinel). The theoretical study was performed in the framework of Density Functional Theory using the Full-Potential Linearized Augmented Plane Waves (FPLAPW) method and employing different approximations for the exchange and correlation potential. In order to discuss the magnetic ordering and the electronic structure of the system we considered different distributions of the Fe/Ti atoms in the two cationic sites of the structure and, for each distribution, different spin arrangements (ferromagnetic, ferrimagnetic and antiferromagnetic cases). We found that the equilibrium structure corresponds to an inverted spinel structure with an antiferromagnetic spin configuration in which the magnetic moments of the Fe ions in both A and B sublattices are ferromagnetically ordered, while the magnetizations of these two sublattices are antiparallel with respect to each other. . Our calculations predict that TiFe2O4 is a wide-band gap semiconductor (band-gap in the order of 2.3 eV) and successfully describe the hyperfine properties (isomer shift, magnetic hyperfine field and quadrupole splitting) at the Fe sites that are seen by Mössbauer Spectroscopy (MS) experiments at 4.2 K reported in the literature and MS performed at 300 K in the present study. We also measured and simulated the X-ray Absorption Near Edge Spectroscopy (XANES) spectra of TiFe2O4 at both Ti and Fe K-edges. Our calculations correctly reproduce the XANES spectra and enable us to separate the contribution of each site to the experimental spectra. All these studies enable us to obtain a complete structural, electronic, magnetic and hyperfine characterization of TiFe2O4.
dc.languageeng
dc.publisherAmerican Chemical Society
dc.relationinfo:eu-repo/semantics/altIdentifier/url/http://pubs.acs.org/doi/10.1021/acs.jpcc.9b06550
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1021/acs.jpcc.9b06550
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectDFT+U
dc.subjectMAGNETISM
dc.subjectSPINEL
dc.subjectTiFe2O4
dc.subjectXANES
dc.subjectMÖSSBAUER
dc.titleStructural, electronic and magnetic properties and hyperfine interactions at the Fe sites of the spinel TiFe 2 O 4 : Ab Initio, XANES and mössbauer study
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución