dc.creatorLerner, Andrei K.
dc.creatorLorist, Emiel
dc.creatorOmbrosi, Sheldy Javier
dc.date.accessioned2022-07-13T15:16:41Z
dc.date.accessioned2022-10-15T15:10:28Z
dc.date.available2022-07-13T15:16:41Z
dc.date.available2022-10-15T15:10:28Z
dc.date.created2022-07-13T15:16:41Z
dc.date.issued2022-02-28
dc.identifierLerner, Andrei K.; Lorist, Emiel; Ombrosi, Sheldy Javier; Operator-free sparse domination; Cambridge; Forum of Mathematics. Sigma; 10; 28-2-2022; 1-28
dc.identifierhttp://hdl.handle.net/11336/162017
dc.identifier2050-5094
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4400952
dc.description.abstractWe obtain a sparse domination principle for an arbitrary family of functions f(x,Q) , where x∈Rn and Q is a cube in Rn . When applied to operators, this result recovers our recent works [37, 39]. On the other hand, our sparse domination principle can be also applied to non-operator objects. In particular, we show applications to generalised Poincaré–Sobolev inequalities, tent spaces and general dyadic sums. Moreover, the flexibility of our result allows us to treat operators that are not localisable in the sense of [39], as we will demonstrate in an application to vector-valued square functions.
dc.languageeng
dc.publisherCambridge
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://www.cambridge.org/core/product/identifier/S2050509422000081/type/journal_article
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1017/fms.2022.8
dc.relationinfo:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/2106.16202
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectSPARSE
dc.subjectDOMINATION
dc.subjectMAXIMAL
dc.titleOperator-free sparse domination
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución