dc.creatorKuttler, Jochen
dc.creatorPianzola, Arturo
dc.creatorQuallbrunn, Federico
dc.date.accessioned2019-03-20T17:50:40Z
dc.date.accessioned2022-10-15T15:08:38Z
dc.date.available2019-03-20T17:50:40Z
dc.date.available2022-10-15T15:08:38Z
dc.date.created2019-03-20T17:50:40Z
dc.date.issued2017-10
dc.identifierKuttler, Jochen; Pianzola, Arturo; Quallbrunn, Federico; Lie algebroids arising from simple group schemes; Academic Press Inc Elsevier Science; Journal of Algebra; 487; 10-2017; 1-19
dc.identifier0021-8693
dc.identifierhttp://hdl.handle.net/11336/72105
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4400752
dc.description.abstractA classical construction of Atiyah assigns to any (real or complex) Lie group G, manifold M and principal homogeneous G-space P over M, a Lie algebroid over M ([1]). The spirit behind our work is to put this work within an algebraic context, replace M by a scheme X and G by a “simple” reductive group scheme G over X (in the sense of Demazure–Grothendieck) that arise naturally with an attached torsor (which plays the role of P) in the study of Extended Affine Lie Algebras (see [9] for an overview). Lie algebroids in an algebraic sense were also considered by Beilinson and Bernstein. We will explain how the present work relates to theirs.
dc.languageeng
dc.publisherAcademic Press Inc Elsevier Science
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0021869317302788
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/https://dx.doi.org/10.1016/j.jalgebra.2017.05.005
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectKÄHLER DIFFERENTIALS FOR LIE ALGEBRAS
dc.subjectLIE ALGEBROIDS
dc.subjectREDUCTIVE GROUP SCHEME
dc.subjectSCHEME ON LIE ALGEBRAS
dc.titleLie algebroids arising from simple group schemes
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución