dc.creatorPradolini, Gladis Guadalupe
dc.creatorRecchi, Diana Jorgelina
dc.date.accessioned2019-12-23T16:49:17Z
dc.date.accessioned2022-10-15T15:07:14Z
dc.date.available2019-12-23T16:49:17Z
dc.date.available2022-10-15T15:07:14Z
dc.date.created2019-12-23T16:49:17Z
dc.date.issued2018-06
dc.identifierPradolini, Gladis Guadalupe; Recchi, Diana Jorgelina; Welland's type inequalities for fractional operators of convolution with kernels satisfying a Hörmander type condition and their commutators; Taylor & Francis Ltd; Integral Transforms And Special Functions; 29; 8; 6-2018; 623-640
dc.identifier1065-2469
dc.identifierhttp://hdl.handle.net/11336/92752
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4400612
dc.description.abstractLet μ be a non-negative Ahlfors n-dimensional measure on Rd. In this context we shall consider convolution type operators Tαf = Kα ∗f, 0 <α< n, where the kernels Kα are supposed to satisfy certain size and regularity conditions. We prove Welland's type inequalities for the operator Tα and its commutator [b,Tα], with b ∈ BMO,that include the case Tα = Iα. As far as we know both estimates are new even in the case of the Lebesgue measure. We shall also give sufficient conditions on a pair of weights that guarantee the boundedness of [b, Tα] between two different weighted Lebesgue spaces when the underlying measure is Ahlfors n-dimensional.
dc.languageeng
dc.publisherTaylor & Francis Ltd
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/http://doi.org/10.1080/10652469.2018.1479852
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectAHLFORS MEASURE
dc.subjectWELLAND´S TYPE INEQUALITY
dc.subjectCOMMUTATORS
dc.titleWelland's type inequalities for fractional operators of convolution with kernels satisfying a Hörmander type condition and their commutators
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución