dc.creatorKoyunbakan, Hikmet
dc.creatorPinasco, Juan Pablo
dc.creatorScarola, Cristian
dc.date.accessioned2020-10-27T16:11:32Z
dc.date.accessioned2022-10-15T14:44:04Z
dc.date.available2020-10-27T16:11:32Z
dc.date.available2022-10-15T14:44:04Z
dc.date.created2020-10-27T16:11:32Z
dc.date.issued2019-02
dc.identifierKoyunbakan, Hikmet; Pinasco, Juan Pablo; Scarola, Cristian; Energy dependent potential problems for the one dimensional p-Laplacian operator; Pergamon-Elsevier Science Ltd; Nonlinear Analysis-real World Applications; 45; 2-2019; 285-298
dc.identifier1468-1218
dc.identifierhttp://hdl.handle.net/11336/116929
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4398280
dc.description.abstractIn this work we analyze a nonlinear eigenvalue problem for the p-Laplacian operator with zero Dirichlet boundary conditions. We assume that the problem has a potential which depends on the eigenvalue parameter, and we show that, for n big enough, there exists a real eigenvalue λn, and their corresponding eigenfunctions have exactly n nodal domains. We characterize the asymptotic behavior of these eigenvalues, obtaining two terms in the asymptotic expansion of λn in powers of n. Finally, we study the inverse nodal problem in the case of energy dependent potentials, showing that some subset of the zeros of the corresponding eigenfunctions is enough to determine the main term of the potential.
dc.languageeng
dc.publisherPergamon-Elsevier Science Ltd
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.nonrwa.2018.07.001
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S1468121818305649
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectASYMPTOTIC BEHAVIOR
dc.subjectEIGENVALUES
dc.subjectNODAL INVERSE PROBLEM
dc.titleEnergy dependent potential problems for the one dimensional p-Laplacian operator
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución