dc.creatorMinian, Elias Gabriel
dc.creatorPiterman, Kevin
dc.date.accessioned2021-11-15T22:27:05Z
dc.date.accessioned2022-10-15T14:34:27Z
dc.date.available2021-11-15T22:27:05Z
dc.date.available2022-10-15T14:34:27Z
dc.date.created2021-11-15T22:27:05Z
dc.date.issued2020-09
dc.identifierMinian, Elias Gabriel; Piterman, Kevin; The fundamental group of the p-subgroup complex; Oxford University Press; Journal of the London Mathematical Society; 103; 2; 9-2020; 449-469
dc.identifier0024-6107
dc.identifierhttp://hdl.handle.net/11336/146939
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4397420
dc.description.abstractWe study the fundamental group of the p-subgroup complex of a finite group G. We show first that pi1(A_3(Alt_{10})) is not a free group (here Alt_{10} is the alternating group on 10 letters). This is the first concrete example in the literature of a p-subgroup complex with non-free fundamental group. We prove that, modulo a well-known conjecture of M. Aschbacher, pi1(A_p(G)) = pi1(A_p(S_G)) * F, where F is a free group and pi1(A_p(S_G)) is free if S_G is not almost simple. Here S_G = Omega_1(G)/O_{p´}(Omega_1(G)). This result essentially reduces the study of the fundamental group of p-subgroup complexes to the almost simple case. We also exhibit various families of almost simple groups whose p-subgroup complexes have free fundamental group.
dc.languageeng
dc.publisherOxford University Press
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://www.lms.ac.uk/publications/jlms
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1112/jlms.12380
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectp-subgroups
dc.subjectposets
dc.subjectfinite groups
dc.subjectfundamental group
dc.titleThe fundamental group of the p-subgroup complex
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución