Argentina | info:eu-repo/semantics/article
dc.creatorGalvagno, Mariano
dc.creatorGiribet, Gaston Enrique
dc.date.accessioned2021-12-02T20:00:35Z
dc.date.accessioned2022-10-15T14:25:21Z
dc.date.available2021-12-02T20:00:35Z
dc.date.available2022-10-15T14:25:21Z
dc.date.created2021-12-02T20:00:35Z
dc.date.issued2019-11
dc.identifierGalvagno, Mariano; Giribet, Gaston Enrique; Luis Santaló and classical field theory; Springer Verlag Berlín; European Physical Journal H; 44; 4-5; 11-2019; 381-389
dc.identifier2102-6459
dc.identifierhttp://hdl.handle.net/11336/148005
dc.identifier2102-6467
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4396612
dc.description.abstractConsidered one of the founding fathers of integral geometry, Luis Santaló has contributed to various areas of mathematics. His work has applications in number theory, in the theory of differential equations, in stochastic geometry, in functional analysis, and also in theoretical physics. Between the 1950’s and the 1970’s, he wrote a series of papers on general relativity and on the attempts at generalizing Einstein’s theory to formulate a unified field theory. His main contribution in this subject was to provide a classification theorem for the plethora of tensors that were populating Einstein’s generalized theory. This paper revisits his work on theoretical physics.
dc.languageeng
dc.publisherSpringer Verlag Berlín
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1140/epjh/e2019-100038-9
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1140/epjh/e2019-100038-9
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectClassical field theory
dc.subjectHistory of physics
dc.titleLuis Santaló and classical field theory
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución