dc.creatorAimar, Hugo Alejandro
dc.creatorBernardis, Ana Lucia
dc.creatorMartín Reyes, Francisco Javier
dc.date.accessioned2020-03-22T12:20:15Z
dc.date.accessioned2022-10-15T14:23:44Z
dc.date.available2020-03-22T12:20:15Z
dc.date.available2022-10-15T14:23:44Z
dc.date.created2020-03-22T12:20:15Z
dc.date.issued2003-03
dc.identifierAimar, Hugo Alejandro; Bernardis, Ana Lucia; Martín Reyes, Francisco Javier; Multiresolution Approximations and Wavelet Bases of Weighted Lp Spaces; Birkhauser Boston Inc; Journal Of Fourier Analysis And Applications; 9; 5; 3-2003; 497-510
dc.identifier1069-5869
dc.identifierhttp://hdl.handle.net/11336/100605
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4396492
dc.description.abstractWe study boundedness and convergence on Lp(ℝn, dμ) of the projection operators Pj given by MRA structures with non-necessarily compactly supported scaling function. As a consequence, we prove that if w is a locally integrable function such that w -1/p-1 (x)(1+|x|)-N is integrable for some N > 0, then the Muckenhoupt Ap condition is necessary and sufficient for the associated wavelet system to be an unconditional basis for the weighted space L p(ℝn, w(x) dx), 1 < p < ∞.
dc.languageeng
dc.publisherBirkhauser Boston Inc
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s00041-003-0024-y
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectAP WEIGHTS
dc.subjectWAVELETS
dc.subjectWEIGHTED LEBESGUE SPACES
dc.titleMultiresolution Approximations and Wavelet Bases of Weighted Lp Spaces
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución