dc.creator | Aimar, Hugo Alejandro | |
dc.creator | Bernardis, Ana Lucia | |
dc.creator | Martín Reyes, Francisco Javier | |
dc.date.accessioned | 2020-03-22T12:20:15Z | |
dc.date.accessioned | 2022-10-15T14:23:44Z | |
dc.date.available | 2020-03-22T12:20:15Z | |
dc.date.available | 2022-10-15T14:23:44Z | |
dc.date.created | 2020-03-22T12:20:15Z | |
dc.date.issued | 2003-03 | |
dc.identifier | Aimar, Hugo Alejandro; Bernardis, Ana Lucia; Martín Reyes, Francisco Javier; Multiresolution Approximations and Wavelet Bases of Weighted Lp Spaces; Birkhauser Boston Inc; Journal Of Fourier Analysis And Applications; 9; 5; 3-2003; 497-510 | |
dc.identifier | 1069-5869 | |
dc.identifier | http://hdl.handle.net/11336/100605 | |
dc.identifier | CONICET Digital | |
dc.identifier | CONICET | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/4396492 | |
dc.description.abstract | We study boundedness and convergence on Lp(ℝn, dμ) of the projection operators Pj given by MRA structures with non-necessarily compactly supported scaling function. As a consequence, we prove that if w is a locally integrable function such that w -1/p-1 (x)(1+|x|)-N is integrable for some N > 0, then the Muckenhoupt Ap condition is necessary and sufficient for the associated wavelet system to be an unconditional basis for the weighted space L p(ℝn, w(x) dx), 1 < p < ∞. | |
dc.language | eng | |
dc.publisher | Birkhauser Boston Inc | |
dc.relation | info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s00041-003-0024-y | |
dc.rights | https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ | |
dc.rights | info:eu-repo/semantics/restrictedAccess | |
dc.subject | AP WEIGHTS | |
dc.subject | WAVELETS | |
dc.subject | WEIGHTED LEBESGUE SPACES | |
dc.title | Multiresolution Approximations and Wavelet Bases of Weighted Lp Spaces | |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:ar-repo/semantics/artículo | |
dc.type | info:eu-repo/semantics/publishedVersion | |