dc.creatorRodríguez, Jorge Tomás
dc.date.accessioned2022-08-05T15:11:33Z
dc.date.accessioned2022-10-15T14:22:04Z
dc.date.available2022-08-05T15:11:33Z
dc.date.available2022-10-15T14:22:04Z
dc.date.created2022-08-05T15:11:33Z
dc.date.issued2021-11
dc.identifierRodríguez, Jorge Tomás; On the rank and the approximation of symmetric tensors; Elsevier Science Inc.; Linear Algebra and its Applications; 628; 11-2021; 72-102
dc.identifier0024-3795
dc.identifierhttp://hdl.handle.net/11336/164382
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4396325
dc.description.abstractIn this work we study different notions of ranks and approximation of tensors. We consider the tensor rank, the nuclear rank and we introduce the notion of symmetric decomposable rank, a notion of rank defined only on symmetric tensors. We show that when approximating symmetric tensors, using the symmetric decomposable rank has some significant advantages over the tensor rank and the nuclear rank.
dc.languageeng
dc.publisherElsevier Science Inc.
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0024379521002603
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.laa.2021.07.002
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectAPPROXIMATION OF TENSORS
dc.subjectMULTIWAY ARRAYS
dc.subjectRANK
dc.subjectSYMMETRIC TENSORS
dc.subjectTENSOR PRODUCTS
dc.titleOn the rank and the approximation of symmetric tensors
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución