dc.creatorCabrelli, Carlos
dc.creatorCarbajal, Diana Agustina
dc.date.accessioned2019-11-14T19:54:19Z
dc.date.accessioned2022-10-15T14:21:23Z
dc.date.available2019-11-14T19:54:19Z
dc.date.available2022-10-15T14:21:23Z
dc.date.created2019-11-14T19:54:19Z
dc.date.issued2018-01
dc.identifierCabrelli, Carlos; Carbajal, Diana Agustina; Riesz bases of exponentials on unbounded multi-tiles; American Mathematical Society; Proceedings of the American Mathematical Society; 146; 5; 1-2018; 1991-2004
dc.identifier0002-9939
dc.identifierhttp://hdl.handle.net/11336/88969
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4396266
dc.description.abstractWe prove the existence of Riesz bases of exponentials of L2(Ω), provided that Ω ⊂ ℝd is a measurable set of finite and positive measure, not necessarily bounded, that satisfies a multi-tiling condition and an arithmetic property that we call admissibility. This property is satisfied for any bounded domain, so our results extend the known case of bounded multi-tiles. We also extend known results for submulti-tiles and frames of exponentials to the unbounded case.
dc.languageeng
dc.publisherAmerican Mathematical Society
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://www.ams.org/journals/proc/2018-146-05/S0002-9939-2018-13980-5/home.html
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectFRAMES OF EXPONENTIALS
dc.subjectMULTI-TILING
dc.subjectPALEY-WIENER SPACES
dc.subjectRIESZ BASES OF EXPONENTIALS
dc.subjectSHIFT-INVARIANT SPACES
dc.subjectSUBMULTI- TILING
dc.titleRiesz bases of exponentials on unbounded multi-tiles
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución