dc.creatorChanson, Marc
dc.creatorKotsias, Basilio Aristides
dc.creatorPeracchia, Camillo
dc.creatorO’Grady, Scott M.
dc.date.accessioned2020-05-22T20:36:23Z
dc.date.accessioned2022-10-15T14:14:56Z
dc.date.available2020-05-22T20:36:23Z
dc.date.available2022-10-15T14:14:56Z
dc.date.created2020-05-22T20:36:23Z
dc.date.issued2007-05
dc.identifierChanson, Marc; Kotsias, Basilio Aristides; Peracchia, Camillo; O’Grady, Scott M.; Interactions of connexins with other membrane channels and transporters; Pergamon-Elsevier Science Ltd; Progress In Biophysics And Molecular Biology; 94; 1-2; 5-2007; 233-244
dc.identifier0079-6107
dc.identifierhttp://hdl.handle.net/11336/105827
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4395653
dc.description.abstractCell-to-cell communication through gap junctions exists in most animal cells and is essential for many important biological processes including rapid transmission of electric signals to coordinate contraction of cardiac and smooth muscle, the intercellular propagation of Ca2+ waves and synchronization of physiological processes between adjacent cells within a tissue. Recent studies have shown that connexins (Cx) can have either direct or indirect interactions with other plasma membrane ion channels or membrane transport proteins with important functional consequences. For example, in tissues most severely affected by cystic fibrosis (CF), activation of the CF Transmembrane Conductance Regulator (CFTR) has been shown to influence connexin function. Moreover, a direct interaction between Cx45.6 and the Major Intrinsic Protein/AQP0 in lens appears to influence the process of cell differentiation whereas interactions between aquaporin 4 (AQP4) and Cx43 in mouse astrocytes may coordinate the intercellular movement of ions and water between astrocytes. In this review, we discuss evidence supporting interactions between Cx and membrane channels/transporters including CFTR, aquaporins, ionotropic glutamate receptors, and between pannexin1, another class of putative gapjunction- forming proteins, and Kvb3, a regulatory b-subunit of voltage gated potassium channels. Although the precise molecular nature of these interactions has yet to be defined, their consequences may be critical for normal tissue homeostasis. molecular nature of these interactions has yet to be defined, their consequences may be critical for normal tissue homeostasis. molecular nature of these interactions has yet to be defined, their consequences may be critical for normal tissue homeostasis. molecular nature of these interactions has yet to be defined, their consequences may be critical for normal tissue homeostasis. within a tissue. Recent studies have shown that connexins (Cx) can have either direct or indirect interactions with other plasma membrane ion channels or membrane transport proteins with important functional consequences. For example, in tissues most severely affected by cystic fibrosis (CF), activation of the CF Transmembrane Conductance Regulator (CFTR) has been shown to influence connexin function. Moreover, a direct interaction between Cx45.6 and the Major Intrinsic Protein/AQP0 in lens appears to influence the process of cell differentiation whereas interactions between aquaporin 4 (AQP4) and Cx43 in mouse astrocytes may coordinate the intercellular movement of ions and water between astrocytes. In this review, we discuss evidence supporting interactions between Cx and membrane channels/transporters including CFTR, aquaporins, ionotropic glutamate receptors, and between pannexin1, another class of putative gapjunction- forming proteins, and Kvb3, a regulatory b-subunit of voltage gated potassium channels. Although the precise molecular nature of these interactions has yet to be defined, their consequences may be critical for normal tissue homeostasis. molecular nature of these interactions has yet to be defined, their consequences may be critical for normal tissue homeostasis. molecular nature of these interactions has yet to be defined, their consequences may be critical for normal tissue homeostasis. molecular nature of these interactions has yet to be defined, their consequences may be critical for normal tissue homeostasis. within a tissue. Recent studies have shown that connexins (Cx) can have either direct or indirect interactions with other plasma membrane ion channels or membrane transport proteins with important functional consequences. For example, in tissues most severely affected by cystic fibrosis (CF), activation of the CF Transmembrane Conductance Regulator (CFTR) has been shown to influence connexin function. Moreover, a direct interaction between Cx45.6 and the Major Intrinsic Protein/AQP0 in lens appears to influence the process of cell differentiation whereas interactions between aquaporin 4 (AQP4) and Cx43 in mouse astrocytes may coordinate the intercellular movement of ions and water between astrocytes. In this review, we discuss evidence supporting interactions between Cx and membrane channels/transporters including CFTR, aquaporins, ionotropic glutamate receptors, and between pannexin1, another class of putative gapjunction- forming proteins, and Kvb3, a regulatory b-subunit of voltage gated potassium channels. Although the precise molecular nature of these interactions has yet to be defined, their consequences may be critical for normal tissue homeostasis. molecular nature of these interactions has yet to be defined, their consequences may be critical for normal tissue homeostasis. molecular nature of these interactions has yet to be defined, their consequences may be critical for normal tissue homeostasis. molecular nature of these interactions has yet to be defined, their consequences may be critical for normal tissue homeostasis. within a tissue. Recent studies have shown that connexins (Cx) can have either direct or indirect interactions with other plasma membrane ion channels or membrane transport proteins with important functional consequences. For example, in tissues most severely affected by cystic fibrosis (CF), activation of the CF Transmembrane Conductance Regulator (CFTR) has been shown to influence connexin function. Moreover, a direct interaction between Cx45.6 and the Major Intrinsic Protein/AQP0 in lens appears to influence the process of cell differentiation whereas interactions between aquaporin 4 (AQP4) and Cx43 in mouse astrocytes may coordinate the intercellular movement of ions and water between astrocytes. In this review, we discuss evidence supporting interactions between Cx and membrane channels/transporters including CFTR, aquaporins, ionotropic glutamate receptors, and between pannexin1, another class of putative gapjunction- forming proteins, and Kvb3, a regulatory b-subunit of voltage gated potassium channels. Although the precise molecular nature of these interactions has yet to be defined, their consequences may be critical for normal tissue homeostasis. molecular nature of these interactions has yet to be defined, their consequences may be critical for normal tissue homeostasis. molecular nature of these interactions has yet to be defined, their consequences may be critical for normal tissue homeostasis. molecular nature of these interactions has yet to be defined, their consequences may be critical for normal tissue homeostasis. 2+ waves and synchronization of physiological processes between adjacent cells within a tissue. Recent studies have shown that connexins (Cx) can have either direct or indirect interactions with other plasma membrane ion channels or membrane transport proteins with important functional consequences. For example, in tissues most severely affected by cystic fibrosis (CF), activation of the CF Transmembrane Conductance Regulator (CFTR) has been shown to influence connexin function. Moreover, a direct interaction between Cx45.6 and the Major Intrinsic Protein/AQP0 in lens appears to influence the process of cell differentiation whereas interactions between aquaporin 4 (AQP4) and Cx43 in mouse astrocytes may coordinate the intercellular movement of ions and water between astrocytes. In this review, we discuss evidence supporting interactions between Cx and membrane channels/transporters including CFTR, aquaporins, ionotropic glutamate receptors, and between pannexin1, another class of putative gapjunction- forming proteins, and Kvb3, a regulatory b-subunit of voltage gated potassium channels. Although the precise molecular nature of these interactions has yet to be defined, their consequences may be critical for normal tissue homeostasis. molecular nature of these interactions has yet to be defined, their consequences may be critical for normal tissue homeostasis. molecular nature of these interactions has yet to be defined, their consequences may be critical for normal tissue homeostasis. molecular nature of these interactions has yet to be defined, their consequences may be critical for normal tissue homeostasis. b3, a regulatory b-subunit of voltage gated potassium channels. Although the precise molecular nature of these interactions has yet to be defined, their consequences may be critical for normal tissue homeostasis.
dc.languageeng
dc.publisherPergamon-Elsevier Science Ltd
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0079610707000053
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.pbiomolbio.2007.03.002
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectCFTR
dc.subjectConexinas
dc.titleInteractions of connexins with other membrane channels and transporters
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución