dc.creatorChernousov, Vladimir
dc.creatorNeher, Erhard
dc.creatorPianzola, Arturo
dc.creatorYahorau, Uladzimir
dc.date.accessioned2019-11-28T19:39:48Z
dc.date.accessioned2022-10-15T14:08:06Z
dc.date.available2019-11-28T19:39:48Z
dc.date.available2022-10-15T14:08:06Z
dc.date.created2019-11-28T19:39:48Z
dc.date.issued2016-02
dc.identifierChernousov, Vladimir; Neher, Erhard; Pianzola, Arturo; Yahorau, Uladzimir; On conjugacy of Cartan subalgebras in extended affine Lie algebras; Academic Press Inc Elsevier Science; Advances in Mathematics; 290; 2-2016; 260-292
dc.identifier0001-8708
dc.identifierhttp://hdl.handle.net/11336/90818
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4395038
dc.description.abstractThat finite-dimensional simple Lie algebras over the complex numbers can be classified by means of purely combinatorial and geometric objects such as Coxeter-Dynkin diagrams and indecomposable irreducible root systems, is arguably one of the most elegant results in mathematics. The definition of the root system is done by fixing a Cartan subalgebra of the given Lie algebra. The remarkable fact is that (up to isomorphism) this construction is independent of the choice of the Cartan subalgebra. The modern way of establishing this fact is by showing that all Cartan subalgebras are conjugate. For symmetrizable Kac-Moody Lie algebras, with the appropriate definition of Cartan subalgebra, conjugacy has been established by Peterson and Kac. An immediate consequence of this result is that the root systems and generalized Cartan matrices are invariants of the Kac-Moody Lie algebras. The purpose of this paper is to establish conjugacy of Cartan subalgebras for extended affine Lie algebras; a natural class of Lie algebras that generalizes the finite-dimensional simple Lie algebra and affine Kac-Moody Lie algebras.
dc.languageeng
dc.publisherAcademic Press Inc Elsevier Science
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0001870815005125
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.aim.2015.11.038
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectCARTAN SUBALGEBRA
dc.subjectCONJUGACY
dc.subjectEXTENDED AFFINE LIE ALGEBRA
dc.subjectLIE TORUS
dc.subjectNON-ABELIAN COHOMOLOGY
dc.subjectREDUCTIVE GROUP SCHEME
dc.titleOn conjugacy of Cartan subalgebras in extended affine Lie algebras
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución