dc.creatorCaceres Garcia Faure, Manuel Osvaldo
dc.date.accessioned2021-02-25T18:13:04Z
dc.date.accessioned2022-10-15T14:03:39Z
dc.date.available2021-02-25T18:13:04Z
dc.date.available2022-10-15T14:03:39Z
dc.date.created2021-02-25T18:13:04Z
dc.date.issued2020-10
dc.identifierCaceres Garcia Faure, Manuel Osvaldo; Stochastic PDEs, random fields and exact mean-values; IOP Publishing; Journal of Physics A: Mathematical and Theoretical; 53; 40; 10-2020; 1-22
dc.identifier1751-8113
dc.identifierhttp://hdl.handle.net/11336/126657
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4394663
dc.description.abstractIntroducing projector-operator technique and algebra of Terwiel's cumulants we study stochastic linear partial differential equations with global and local disorder. We present the evolution equation for the mean-value of the field as a series in terms of Terwiel's cumulant operators. Then, we prove that if we use binary disorder with time exponential-correlated structure, as source of the stochastic perturbation, this series cuts leading to a treatable evolution equation. We apply this approach to find the exact mean-value solution of electromagnetic waves with stochastic absorption of energy in conducting media. This model shows the occurrence of novel time-scale separation phenomena. Local disorder in telegrapher's equation is also presented. Thus we show that strong disorder leads to anomalous behavior at short and long time regimes. In addition, other physical systems with global disorder are worked out to find exact mean-value solutions: finite-velocity diffusion in the presence of a deterministic force (Smoluchoswki-like process generalizing, in this way, Feynman-Kac's formula for its numerical solution); Lorentz' force on a fluctuating charge model (we calculate the diffusion coefficient transverse to the applied magnetic field); and a generalized non-Maxwellian velocity distribution (Ornstein-Uhlenbeck like process showing a noise-induced transition in the stationary distribution).
dc.languageeng
dc.publisherIOP Publishing
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/1751-8121/aba655
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1088/1751-8121/aba655
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectCATTANEO-FICK
dc.subjectDISORDER
dc.subjectFEYNMAN-KAC
dc.subjectFINITE-VELOCITY DIFFUSION
dc.subjectLORENTZ FORCE
dc.subjectRANDOM MEDIA
dc.subjectSMOLUCHOSWKI
dc.titleStochastic PDEs, random fields and exact mean-values
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución