dc.creatorCarrasco, Federico León
dc.creatorReula, Oscar Alejandro
dc.date.accessioned2018-11-20T13:16:05Z
dc.date.accessioned2022-10-15T13:59:15Z
dc.date.available2018-11-20T13:16:05Z
dc.date.available2022-10-15T13:59:15Z
dc.date.created2018-11-20T13:16:05Z
dc.date.issued2017-09-11
dc.identifierCarrasco, Federico León; Reula, Oscar Alejandro; Novel scheme for simulating the force-free equations: Boundary conditions and the evolution of solutions towards stationarity; American Physical Society; Physical Review D; 96; 6; 11-9-2017; 3006
dc.identifier2470-0029
dc.identifierhttp://hdl.handle.net/11336/64694
dc.identifier0556-2791
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4394240
dc.description.abstractForce-free electrodynamics (FFE) describes a particular regime of magnetically dominated relativistic plasmas, which arises on several astrophysical scenarios of interest such as pulsars or active galactic nuclei. In this article, we present a full 3D numerical implementation of the FFE evolution around a Kerr black hole. The novelty of our approach is three-folded: (i) We use the "multiblock" technique [1L. Lehner, O. Reula, and M.Tiglio, Multi-block simulations in general relativity: High-order discretizations, numerical stability and applications, Classical Quantum Gravity 22, 5283 (2005).CQGRDG0264-938110.1088/0264-9381/22/24/006] to represent a domain with S2×R+ topology within a stable finite-differences scheme. (ii) We employ as evolution equations those arising from a covariant hyperbolization of the FFE system [2F. Carrasco and O. Reula, Covariant hyperbolization of force-free electrodynamics, Phys. Rev. D 93, 085013 (2016).PRVDAQ2470-001010.1103/PhysRevD.93.085013]. (iii) We implement stable and constraint-preserving boundary conditions to represent an outer region given by a uniform magnetic field aligned or misaligned respect to the symmetry axis. The construction of appropriate and consistent boundary conditions, both preserving the constraints and physically immersing the system in a uniform magnetic field, has allowed us to obtain long-term stationary solutions representing jets of astrophysical relevance. These numerical solutions are shown to be consistent with previous studies.
dc.languageeng
dc.publisherAmerican Physical Society
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/https://dx.doi.org/10.1103/PhysRevD.96.063006
dc.relationinfo:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1703.10241
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/prd/abstract/10.1103/PhysRevD.96.063006
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectJets
dc.subjectKerr
dc.subjectForce-free
dc.titleNovel scheme for simulating the force-free equations: Boundary conditions and the evolution of solutions towards stationarity
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución